pPD70320/322G/L
CMOS 16-BIT MICROCOMPUTER

PRODUCT DESCRIPTION

NEC

WPD70320/22

TABLE OF CONTENTS

|. General Information
1. Pin functions

2.

12

1.1 Port Pins
1.2 Non-port Pins

CPU
2.1 Registers
2.1.1 Register bank

2.1.2 General-purpose registers (AW, BW, CW, DW)

2.1.3 Pointers (SP, BP) and Index registers (IX, 1Y)
2.1.4 Segment registers (PS, §S, DS0, DS1)
2.1.5 Internal data ar=a base register (IDB)
2.1.6 Special function registers
2.2 Program counter (PC)
2.3 PSW (Program status word)
2.3.1 CY (Carry flag)
2.3.2 P (Parity flag)
2.3.3 AC (Auxiliary flag)
2.3.4 Z (Zero flag)
2.3.5 S (Sign flag)
2.3.6 V (Overflow flag)
2.3.7 IBRK (/O Break flag)
2.3.8 BRK (Break flag)
2.3.9 IE (Interrupt enable flag)
2.3.10 DIR (Direction flag)
2.3.11 RBO-RB2 (Register Bank 0-2 flag)
2.3.12 FO, F1 (User flag 0, 1 flag)
2.4 Memory space
2.4.1 Internal data area
2.4.2 Internal data area base register (IDB)
2.4.3 Special function register area
2.4.4 Internal RAM area
2.4.5 Vector area
2.4.6 External memory area
2.4.7 Internal ROM area
2.51/0 Space

Interrupt
3.1 Interrupt controller
3.2 Interrupt sources
3.3 Interrupt controller function
3.3.1 Multiple interrupt priority control

3.3.2 Priority control during simultaneous interrupt

3.4 Interrupt response methods
3.4.1 Vector interrupt
. 3.4.2 Register bank switching function
3.4.3 Macro-service function
3.5 NMI (Nonmaskable interrupt)
3.6 INT {Interrupt)
3.7 Interrupt exclusive of NMI and INT
3.8 External interrupt
3.9 Software interrupt
3.9.1 General software interrupt
3.9.2 I/0 instruction interrupt
3.9.3 FPO instruction interrupt

. Bus control

4.1 Programmable wait function
4.2 Bus hold function
4.3 Refresh function
4.3.1 Refresh mode register (RFM)
4.4 Bus use privileges
4.5 Bus timing

WPD70320/22 N E C

5. DMA Controller
5.1 Terminal functions
5.2 DMA operations
5.3 DMA control register
5.3.1 DMA mode register (DOMAMO, DMAM1)
5.3.2 DMA control register (DMACO, DMACH1)
5.3.3 DMA service channel
5.3.4 DMA interrupt request control registers (DICO, DIC1)
5.4 DMA transmission timing

6. Clock generation circuit
6.1 Configuration of clock generation circuit
6.2 Processor control register (PRC)

7. Time base counter
7.1 Configuration of time base counter
7.2 Specifying a time base interval
7.3 Time base interrupt request control register (TBIC)

8. Serial interface
8.1 Configuration of serial interface
8.2 Asynchronous mode
8.3 /0 interface mode
8.4 Serial mode registers (SCM0, SCM1)
8.5 Baud rate generator
8.5.1 Serial control registers (SCC0, SCC1)
8.6 Serial error processing
8.6.1 Serial error registers (SCEOQ, SCE1)
8.7 Break detection function
8.8 Serial interface interrupt request

9. Timer unit
9.1 Timer unit: configuration and operation
9.2 Timer control registers (TMCO, TMC1)
9.3 Timer unit interrupt request

10. Port functions
10.1 Port 0-2
10.1.1 Hardware configuration
10.1.2 Individual port functions
10.2Port T
10.2.1 Hardware configuration
10.2.2 Port T mode register (PMT)

-
—-

. Standby functions
11.1 Standby control register (STBC)
11.2 HALT mode
11.2.1 Release from the HALT mode
11.3STOP mode
11.3.1 Release from the STOP mode

12. Condition after reset

13. Instruction set
13.1 Additional instructions for the uPD70108/70116
13.2 Instruction set operations
13.3 List of instructions

14. Explanation of instructions

NEC

This document describes the functions of a product under development. Certain parts of the document are subject to

change without notice.

NEC MOS Iintegrated Circuit
wPD70322, uPD70320G/L One Chip Microcomputer

The uPD70322 (also known as V25tm) is a one -chip microcomputer which features one-chip integration of 16-bit CPU,
ROM, RAM, serial interface, timer, DMA controller, interrupt controller and others. The uPD70322 is software-compatible with
the 8/16-bit microprocessor uPD70108/70116 (also known as V20tm/v30tm). The xPD70320 is a yPD70322 without ROM.

Features

internal 16-bit architecture, external 8-bit data bus.

software-compatible with uPD70108/70116 (in native mode) (additional instructions available).
minimum instruction cycle: 400 ns (10MHz, 5V).

internal ROM: 16383W x 8 (uPD70322).

internal RAM: 256W x 8.

one-chip peripheral hardware memory mapping (special function register).
input port (port T) with a comparator: 8 channels.,

1/0 lines (input ports: 4; input/output ports: 20).

serial interface (with a built-in dedicated baud rate generator): 2 ch; asynchronous mode, I/O interface mode.
interrupt controller

O programmable priority (8 levels)

O vector interrupt function

O register bank switching function

O macro-service function

DRAM, pseudo SRAM refresh function

DMA controller

input/output instructions, FPO instruction interrupt function.

16-bit timers: 2.

time base counter.

built-in clock generator circuit.

programmable wait function.

standby function (STOP/HALT).

variable instruction cycles: 400ns, 800ns, 1.6ps (10MHz, 5V).

CMOS.

single power supply.

80-pin plastic flat package (pPD70322G, pPD70320G).

84-pin PLCC (Plastic Leaded Chip Carrier) upPD70322L, uPD70320L).

pPD70320/22

WPD70320/22 N E C

Pin Connection Diagram

(1) 80-pin Plastic Flat Package (top view).

§8Em gzo a
N -0 — w (0
§§ee§ﬁ§%é§é§92;5
822222;’22‘:288288
P05 | 1 64 | VTH
PO6 | 2 63 | PT7
PO7/CLKOUT | 3 62 [PT6
DO |4 61 | PT5
D1{5 60 | PT4
D2 |6 59 | PT3
D3 |7 58 | PT2
D4 |8 57 [PT1
D59 56 | PTO
o6 | 10 uPD70322/70320 55 | P17/READY
D7 | 11 FLAT PACKAGE 54 | P16/SCKO
A0 |12 53 [P15/TOUT
A1 (13 (TOP VIEW) 52 [P14/INTR/POLLC
A2 |14 51 | P13/INTP2/INTAK
A3 |15 50 | P12/INTP1
A4 16 49 | P11/INTPO
A5 |17 48 | P10/NMI
A6 |18 47 | P27/HLDRQ
A7 |19 46 | P26/HLDAK
A8 | 20 45 | P25/TC1
A9 |21 44 | P24/DMAAKT
A10 | 22 43 | P23/DMARQ1
A11 |23 42 | P22/TCO
A12 | 24 41 | P21/DMAAKO
S8R82353939853 <
93.‘22':?39280’8‘3"’5" Q
<<<<<<<é558258 S

P20/DMARQO | 39

NEC

WPD70320/22

PO7/CLKOUT
DO
D1
D2
D3
D4
D5
D6
D7
AO
Al
A2
A3
A4
A5
A6
A7
A8
A9

A10
Al

(2) 84-pin PLCC (top view)

P06

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

g

1"

10 | POS

9 | NC
8 | PO4
7 | PO3
6 | PO2

uPD70322/70320

80 | VDD
79 | X2

78 | X1

LCC/PLCC PACKAGE

(TOP VIEW)

43
45
46
47

A12} 33

A13| 34

A14| 35

A15 | 36

A16 | 37

A17| 38

A18| 39
A19 | 40
RXDO | 41
TXDO | 44

GND | 42
RXD1

CTSO

CTS1

TXD1
P20/DMARQO | 48

Note: IC terminal should be fixed at the high level.

NC | 49
VvDD | 50

P21/DMAAKO | 51

77 | GND
76 | VTH
75 | NC

52

P22/TCO

©

73
72
71
70
69
68
67
66

64
63
62
61
60
59
58
57
56
55
54

PT7

PT6

PTS

PT4

PT3

PT2

PT1

PTO
P17/READY
P16/SCKO
P15/TOUT
P14/INTR/POLL
p13/INTP2/INTAK
P12/INTP1
P11/INTPO
P10/NMI
p27/HLDRQ
P26/HLDAK
p25/TC1
P24/DMAAKT
P23/DMARQ1

C

wPD70320/22

Zx bx HIA L-034 Zd 14 od 1NOX10/20d DH43Y S1d/LN0
I0HINOD HOLYHVJNOD H3INNOD !
W3LSAS HLIM 1H0d Siyod ENCE Y3IWIL Lig-o

La-o0a

v3
ans
aap
Wy
aisw
81801

O34

L1d/AQV3Y
92d/MVATH
(2d/0¥AH

1353y

6LvV—-0v

!

1

U

U

(=

wesbeIp %0019 02£0,/22£0.adr

3I18VYWWVYHOOHI

]
— WOY 0YOIN H3TIOHINOD e
3anano [H3SN3ND3S OHOIW 1dNYY3ILNI e
—_ v Y] 4300030 NOILONYLSNI 318YWAVEDONd
— 14
g T3INNVHD ‘l
IS] YOL1VH3N3D _
L4 | ——————
-— = . mo_>mmmOmomu. 2vY ot
o R— va (X -
e 31A8Y 91 31A8 952 30V4HILNG [T
-— 3 WOY TYNYILNI WYY TVNYILNI NOILVIINNIWINOD -
o IvIY3S
3 o1 —
LN
" a1
Vi
43170H.LINOD
— via

YLINI/PLd/110d
ZALNI/ELAINVLNI
LdINI/zZLd
0dLNI/L1Ld

IWN/OLd

101/52d
IIVYNG/bZd
IOHYING/£2d
024/22d
0vYvWa/Lzd
0DHYVIG/0Zd

v

N E C pPD70320/22

1. Pin functions

1.1 Port Pins
Pin Name 1/0 Port functions Control functions
PO0-P0O6 1/0 8-bit 1/0 port whose 1/0 can Bﬂeﬁ . RS]
PO7/CLKOUT 1/0/0 specified at bit level ! system clock output
P10/NMI i nonmaskable interrupt request)

input and input port _

W#VWT-P‘G _: external interrupt req:;e’s‘triﬁp;t’ﬁ
PI2/INTPT and input port
P13/W;m o INT acknowledge signal output
P14/POLL/INT 110/, input/output port whose /0 can external interrupt request input

It be specified and POLL input

P15/TOUT 1710, 0 1/0O port whose I/0 can be timer output]
P16/SCKO specified at bit level serial clock output
P17/READY /0,1 READY input

~1;20/DMAF!C)0 110, | 8-bit I/0 port whose I/0 can be DMA request input (CHO)
P21/DMAAKO /0,0 specified at bit level DMA acknowledgement o]nput (CHO)
P22/TCO DMA end output (CH1)
P23/DMARQ1 o1 | DMA request input (CH1)
P24/DMAAK1 110, 0 DMA acknowledgement output (CH1)
P25/TC1 DMA end output (CH1)

—PQG/H'CD_AT(10,0 HOLD acknowledgement outpﬁt
P27/HLDRQ 110,1 HOLD input
PTO-PT7 | input port with 8-bit comparator -

11

WPD70320/22 N E C

1.2 Non-port Pins

Pin Name 110 Function

TXDO output | serial data output B o

TXD1

RXDO input serial data input

RXD1

CTS0 110 CTS input in asynchronous mode; receive clock input in I/O interface mode
CTS1 input CTS input

REFRQ output | DRAM refresh pulse output

VTH input comparator reference voltage input

RESET reset signal input

EA Input for setting ROM-less mode

X1 connector for crystal system clock oscillation. External clock input is carried out by
_)a—h—— Internal connection. Should be fixed to the high level from the outside.

DO-D7 1/0 8-bit data bus

A0-A19 output | 20-bit address output

MREQ T output indicating start of memory bus cycle.

MSTB Strobe output for rr;emory read or memory write.

R/IW T Read cycle and write cycle identification signal output

10STB 1/0 read or I/O write strobe output

VDD Positive power supply pin) T
GND GND pin o

I.C. Internal connection. Should be fixed to the high level from the outside.

12

N E C wPD70320/22

2.CPU

The uPD70322/70320 has a CPU which is software-compatible with the native-mode operation of the uPD70116/70108.
2.1 Registers

The uPD70322/70320 CPU has a general-purpose register set compatible with the uPD70116/70108. It also has special
function registers for the control of on-chip peripheral hardware. These registers are all mapped in the memory space. The
general-purpose register set also serves as built-in RAM, providing a maximum 8-bank register set in the internal RAM.

The addresses of the registers are relocatable in 4-kilobyte units. These addresses are specified using the internal data
area base register (IDB) which is one of the special function registers (see 2.4.2).

2.1.1 Register Bank

The general purpose register setis mapped in the built-in RAM area. The general purpose register setis bank-formatted.
Up to 8 banks of it can be installed. Each bank uses 32 bytes. Of these 8 banks, banks 0 and 1 can also be used for macro-
service channel (see 2.4.2) and DMA service channel (see 5.3.3). They can also be accessed as data memory (see 2.4.4).

Normally the CPU runs programs by using register bank 7, switching automatically to other register banks through the
use of interrupts. Return to the original register bank from a register bank switched by interrupt s carried out only by a return
instruction - the RETRBI instruction (additional instruction from uPD70108/70116) from the interrupt.

Fig. 2-1 shows the configuration of the register bank. The (+00H)-(+01H) in the register bank become reserve areas when
the register bank is used. The general purpose register setis mapped in the area of (+08H)-(+1FH) by an offset from a initial
address from each register bank. The area (+02H)-(+07H) is not for general use as it is used for the switching of register
banks.

Area (+02H) holds the value which the register bank loads to the PC during register bank switching, an offset of the
interrupt processing routine starting address.

(+04H) is an area for saving the PSW when register banks are switched.

(+06H) is an area for saving the PC when register banks are switched.

After reset, register bank 7 is automatically selected.

Initialization of segment register (see 2.1.4) after reset is executed only in the register of register bank 7.

21

wPD70320/22

Fig. 2-1 Configuration of Register Bank

NEC

15 87
T Y oow
reserved
+02H
KxEoon vector PC
Register bank 0 F04H
XXE1FH PSW save
XXE20H +06H
. \ PC save
)
XXE3FH +08H NS0
\
XXE40H :
2 i +0AH §S
XXESFH :
\
XXE60H H +0CH PS
\
3 H
XXETFH " +0EH Ds1
XXEBOH ;
4 ' +1oH 1y
XXE9FH ",
XXEAOH l'. +12H X
s)
\
_—]
XXEBFH ; +14H 8P
XXECOH E
6 ! +16H sSP
\
XXEDFH \
XXEEOH \ +18H BW
7 |
\
XXEFFH +1AH bW
: +1CH cw
| CH :
XX is a value specified by IDB register y FLEN AW
: AM :
e

(offset from starting address of each register bank)

22

N E C uPD70320/22

2.1.2 General purpose registers (AW, BW, CW, DW)

Four 16-bit registers are used as general purpose registers; each register can be accessed as a 16-bit register as well as
8-bit registers by dividing it into higher and lower 8-bits (AH, AL, BH, BL, CH, CL, DH, DL).

These can be used as either 8-bit or 16-bit registers for a wide range of instructions including transfer, arithmetic, and
logical operation instructions.

Each register is used as a default register for specific instruction processing as follows:

AW: word multiplication/division, word input/output, data conversion.

AL: byte multiplication/division, byte input/output, translation, BCD rotation, data conversion.

AH: byte multiplication/division.

BW: translation.

CW: loop control branching, repeat prefixing.

CL.: shift instruction, rotation instruction, BCD operation.

DW: word muiltiplication/division, indirect addressing input/output.

These registers are mapped in the internal RAM. Their addresses are determined by adding the offset of each register to
(IDB register* value* x 4096) + (OEOOH) + (register bank number x 32). *See 2.4.2 for information on IDB register.

Fig. 2-1 Offset values for general purpose registers

—R-l-%;Ster tOffset value |Register | Offset value
AW 1EH AL 1EH
AH 1FH
BwW 18H BL 18H
BH 19H
cw 1CH CL 1CH
CH 1DH
DW 1AH DL 1AH
DH 1BH

2.1.3 Pointers (SO, BP) and Index Registers (X, 1Y)

Base pointers or index registers are used during memory access using based addressing (BP), indexed addressing (IX,
1Y), or based indexed addressing (BP, IX, IY). They are also used as pointers during stack operations (SP). Like the general
purpose registers they are used for instructions for transfer, arithmetic operations, and logical operations; however, in this

case they cannot be used as 8-bit registers. Each of the registers is used as a default register for specific processing as
follows:

SP: stack operations

IX: block transfer, source side of BCD string operations

1Y: block transfer, destination side of BCD string operations.

These registers are mapped in internal RAM. Their addresses are determined by adding the offset of each register to (IDB
register value x 4096) + (OEOOH) + (register bank number x 32). Offset values for each register are indicated in Figure 2-2.
*See 2.4.2 for information on IDB register.

Fig. 2-2 Offset values for pointers and index registers

Register I Offset value
sp 16H
BP 14H
X 12H
1Y 10H

23

wPD70320/22 N E C

2.1.4 Segment registers (PS, SS, DS0, DS1)

The CPU divides the memory space into logical segments of 64 kilobytes each, the starting address of each segment is
specified by the segment register and the offset part of the initial address is specified by another register or by the effective
address.

The physical address therefore is created in the following way:

4 bit

’-l\
o segment starting address
PR nu offset value

X X X X X oo physical address

There are four types of segment registers; PS (Program Segment), SS (Stack Segment), DSO (Data Segment 0),and DS1
(Data Segment 1). The respective segments are used in the following cases:

PS: Program fetch

SS: Stack operation instructions, addressing using the BP as the base register.

DSO0: general variable access, source block data access for block transfer instructions.

DS1: destination block data access for block transfer instructions.

However, other segments can be used instead of DSO by using a segment override prefix, or other segmentsinstead of SS
may be used in the same way in addressing with BP base register.

During reset, the PS of register 7 is initialized for FFFFH and SS, DS0, and DS1 can be initialized for 000H. These registers
are mapped using internal RAM and their addresses are determined by adding the offset of each register to (IDB register*
value x 4096) + (OEOOH) + (register bank number x 32) as indicated in Figure 2-3.

*See 2.4.2 for explanation of IDB register.

Fig. 2-3 Offset values for segment registers

Register Offset value
DSo 08H
DS1 0EH
SS 0AH
PS OCH

2.1.5 Internal data area base register (IDB)

The IDB register is an 8-bit register for determining the address of the internal data area (2.4.1) which is the area for the
special function register (See 2.4.3) for controlling the internal RAM (also used with the general purpose register) and the on-
chip peripheral hardware. These registers can be referenced by using FFFFFH or their own value x 4096 + FFFH (See 2.4.2)
2.1.6 Special function registers

The uPD70320/70322 has a group of register with special functions for setting up and controlling on-chip peripheral
hardware modes. These register groups are memory mapped in the special function register areas inside the internal data
areas and Read/Write is carried out in the same way as with regular memory (see 2.4.3).

The additional BTCLR instructions (See 13.1) can be used only for these special function registers.

2.2 Program Counter (PC)

This is a 16-bit binary counter for holding the offsetinformation on the memory addresses of a program to be executed by
the CPU.

The program counter is incremented each time instruction bytes are fetched from the instruction queue. A new locationis
loaded while executing branch, call, return, and break instructions.

0000H is loaded while resetting. PS is initialized or FFFFH during reset so that the CPU starts execution from FFFFOH after
reset.

2.4

N E C wPD70320/22

2.3 PSW (Program Status Word)

PSW is comprised of six types of status flags and five types of control flags as well as user flags.

Status Flags

@ V (Overflow)

@® S (Sign)

@® Z (Zero)

® AC (Auxiliary Carry)

@ P (Parity)

® CY (Carry)

Control Flags

@ RBO0-RB2 (Register Bank 0-2)

@ DIR (Direction)

@ IE (Interrupt Enable)

@ BRK (Break)

@® IBRK (I/0 Break)

User flags

® FO (User Flag 0)

@ F1 (User Flag 1)

The status flags are automatically set (1) and reset (0) according to a number of instruction executions (data value). The
CY flags can be set directly, reset, and reserved by instructions.

The control flags are set and reset by instructions controlling the CPU operations. The IE and BRK flags are always reset
whenever an interrupt processing is started.

The user flags can be set, reset, and tested by instructions and can be freely used by the user.

When the PSW is processed in byte or word units, it is executed in the following way.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| | T
| | .
1 ERBZ RB1 | RBO \Y DIR IE |BRK| S z F1 AC FO } P IBRK | CY
l \ |

The least significant 8-bit PSW can be stored in the AH register and restored using MOV instructions. PSW can be saved
separately and returned to stack using PUSH PSW and POP PSW instructions. The upper 4 bits of PSW are not affected by
POP PSW instruction. The method of changing the upper 4 bits of the PSW is using the RETI or the RETRBI instruction. The
others are automatically returned before the control flag is changed using interrupt generation. RESET inputis used to initia-
lize PSW at FOO2H using word image. The IBRK and RB0-RB2 flags are set (1) and the others are reset (0).

2.3.1 CY (Carry Flag)

(1) Binary addition and subtraction
When carrying out byte operations, the flag is setwhen there is a carry or a borrow from operation result bit 7; otherwise, it
is reset.
When word operations are carried out, itis setwhen there is a carry or aborrow from operation result bit 15; otherwise, itis
reset.
The flag is not changed by increment and decrement instructions.

(2) Logical operations
The flag is reset regardless of the results of the operations.

(3) Binary multiplication
The flag is reset when an unsigned byte operation gives O for AH; otherwise it is set. The flag is reset when a signed byte
operation gives a sign expansion of AL for AH; otherwise it is set.
The flag is reset when an unsigned word operation gives 0 for DW; otherwise itis set. The flag is reset when a signed word
operation gives a signed expansion of AW for DW; otherwise it is set.
With 8-bit immediate operations, it is reset when the product is within 16 bits and is set when it exceeds 16 bits.

(4) Binary division
Undefined

(5) Shift/Rotate
With shift and rotate which include CY, it is set if the bit shifted to CY is 1, and is reset if 0.

2.3.2 P (Parity Flag)

(1) Binary addition and subtraction, logical operation, shift.
This flag is set when the number of "1” bits in the lower 8 bits, representing the results of an operation, is even; it is reset
when the number is odd.

When results are all 0, it is set.

(2) Binary Multiplication and Division undefinied

2.3.3 AC (Auxiliary Flag)
When working with byte operations, the flag is set when there is a carry from the lower 4 bits to the higher 4 bits or when
there is a borrow from the higher 4 bits to the lower 4 bits; and is reset in all other cases.
In word operations, the same operations are carried out for the lower byte as for byte operations.

(2) Logical operations, binary multiplication and division, shift/rotate undefined

25

uPD70320/22 N E C

2.3.4. Z (Zero Flag)
(1) Binary addition and substraction, logical operations, shift/rotate.
For byte operations, the flag is set if the resulting 8 bits are 0; it is reset for all other values. For word operations, itis set if
the resulting 16 bits are O; it is reset for all other values.
(2) Binary multiplication and division undefined
2.3.5 S (Sign Flag)
(1) Binary addition/subtraction, logical operations, shift/rotate.
For byte operations, it is set when the resulting bit 7 is 1, and reset when 0.
For word operations, it is set when resulting bit 15 is 1, and reset when 0.
(2) Binary multiplication and division
undefined

2.3.6 V (Overflow Flag)
(1) Binary addition and subtraction
For byte operations, itis set if the carries from bits 7 and 6 are different and reset if the same. For word operations, itis set if
the carries from bits 15 and 14 are different and reset if the same.
(2) Binary multiplication
The flag is reset when an unsigned byte operation gives O for AH; otherwise it is set. The flag is reset when a signed byte
operation gives a sign expansion of AL for AH; otherwise it is set.
The flagis reset when an unsigned word operation gives O for DW; otherwise itis set. The flag is reset when a signed word
operation, gives a signed expansion of AW for DW; otherwise it is set.
With 8-bit immediate operations, it is reset when the product is within 16 bits and is set when it exceeds 16 bits.
(3) Binary division
Reset.
(4) Logical operation
Reset.
(5) Shift/Rotate
In the case of left 1 bit shift/rotate,
when CY = most significant bit, is reset
when CY = most significant bit, is set in the operational results.
In the case of right 1 bit shift/rotate,
when most significant bit = next least significant bit after most significant bit, is reset
when most significant bit = next least significant bit after most significant bit, is set.
Undefined in the case of multibit shift/rotate
2.3.7 IBRK (I/0O Break Flag)
Controls the software interrupt generation during input/output instructions.
When the execution ofan l/Q instruction is attempted with IBRK =0, a software interruptis automatically generated (inter-
rupt vector 20), enabling a software simulation of the I/O instruction.
When IBRK = 1, input/output instructions are executed in the normal manner and software interrupts do not take place.
2.3.8 BRK (Break Flag)
Only in a condition where itis saved to the stack as a part of PSW can it be set using memory operation instruction and is
effective after setting when it is restored in the PSW.
If BRK flag is set, software interrupt (interrupt vector 1) automatically takes place when one instruction is executed
making it possible to trace each instruction.
2.3.9 |E (Interrupt Enable Flag)
It is set by the El instruction, to enable the interrupt; it is reset by the DI instruction to disable the interrupt.
2.3.10 DIR (Direction Flag)
It is set by the SET1 DIR instruction and reset by the CLR1 DIR instruction.
When the DIR flag is set, processing is executed from the higher address to the lower address in block transfer/input out-
put group instructions; when it is reset, processing is executed from lower addresses to higher addresses.
2.3.11 RBO-RB2 (Register Bank 0-2 Flag)
The RBO-RB2 is used to specify currently used register banks from among the eight register banks installed in the inter-
nal RAM.
2.3.12 FO, F1 (User Flag 0, 1 Flag)
Can be freely used by users.
The setting and resetting of these flags can be executed by instructions for PSW and can be used to execute set, reset,
and test by using special function register flags.
User flags FO, F1 operate in the following way when operated by flag register.

2.6

N E C wPD70320/22

Fig. 2-2 Format for user flag register (FLAG)

Symbol 4 6 5 4 3 2 1 0 address

FLAG - e F1 - Fo - - - X X FEAH

2.4 Memory Space

The pPD70322/70320 has a 1-megabyte memory space. A memory map is indicated in Fig. 2-3. The space up to
00000H-003FF is used as a vector area. However, it can be used for other purposes if it is not used for vectors. XXEOOH-
XXFFFH (XX indicates IDB register value) is internal data area. The location of this area can be changed in units of 4 kilobytes.
The 4 byte FFFFCH-FFFFFH is reserved. In FFFFFH, IDB register is assigned. Wait cycles can be inserted in the memory
space, programmabile in each 128 kilobytes segment.

The 1 megabyte physical address space is designated by the offset value for the segmentinitiator location which is indi-
cated by a segment starting address which is indicated by segment register and other register or effective address.

Fig. 2-3 Memory Map

segment register

4 bit
1o . segment starting address
B o[xx[x]x] ... offset value

..... physical address (20-bit)

27

wPD70320/22

*1'0 13uueyd 301AI8S-010BW 0} paubisse pue padde}iano Si 821A18S YA

110 Syueq J9)s1Ba1 0} paubisse pue padde|Jano St jaUUBYD DIAISS-0IDBN ©

Aluo 2z£0.2ad" aus 10} st

<

WOY [euwidju; -

]

SSipPE [l Y SI [SUUBYD 9DIAI8S-0I0BW 3Y} O Yueq Jaisibal ay) Jo ssaipe
JOJBINUI AU} SPPE UDIUM 3N[BA BY) 'SSSIPPE 3U) JO IN|BA 13SHO dU} S| HF 2
19)s16a1 gqi Aq pajeubisap anjeA si XX 'L 810N

nv HAT+
"o
N
e
as
as
X1
1sa
(SueagxaKkaze) [sa
SHUBQ 10}09A s]
054
anes Od .
9AeS MSd
Od 1009 .
p1aniasal | Hoo+
0 1
SSI HL+ v
(19uueyd 8 x 3lAq @) ASK . m,Mnm xx -
JauueyD 32IAI8S-0108 W zzoL\ oo ::Ax
; HAS JHO* i HOEH X X 2
0 28 ¢l R
104 HA03 X X HBZA XX
v [wavs v !
Hva
G 1ouu) s |- ICER |
001 HODON | ¢ HOTE X X Suvews somes orowh |
(0 1ouueyo) [ommvaJorsvs | ! 0 st
|UUBYD 30IAIBS ouva H80d X X
wwa [omvs Tovas | emnttss |wodaxc
o L8 st 1ouvees 95meS YO

0 st

HA4d X X

HOFFT X X

HOD3 X X

HOVI X x

HO8HA X X

HO93 X x

HOPF x x

HOZH x x

HO0J x x

HdddAd
panesel HOdddd
HHAAAA
safazi HOAAAA .
Hddddd
pajqesip
HO0444 9
HAdHAd
S9lq 8z 191 .
H00004
(214qopt 91) WOH [eussul
[
HAAA X X
sio)s1Bas £
uonouny [e10ads
||||||| ___JHo0axx
HAAT X % 2
(sa1Aq 962)
WvY (euiajul
1
H00d X X
(314q Z1G) easE BlEp [BUIAIUL 0 ueq Alowaw

HAA€E00
HAH000

depy Alowap £-Z ‘Bi4

Jasn

ease

(FomaTeT 1 10}09A

H0000H
Hddd4d

H0000D
HAAdAH

HO000V
HAAAA6

HO0008
HAAdAL

H00009
HAAAAS

HO000%
HAdd4¢€

H00002
HAdd4T

0 st
(e1iqeBauw|) aoeds Alowasw

238

NEC

2.4.1 Internal Data Areas

The internal data areas are a 512 byte area containing internal RAM and special function register areas. 1-megabyte
memory space can be divided in 4 kilobyte units. The internal data area base addresses are set up using the IDB register

(internal data area base register). The higher 8 bits of the 20-bit internal data base address are set up using the IDB register
and the lower 12 bits are fixed at EOOH (beginning of area).

The internal data area is operated by memory operation instructions.

The internal data areas overlap the external memory space or the internal ROM areas (uPD70322 only).

Memory access for all operations except program fetch can access internal data areas. It should be noted that internal
data areas cannot be accessed by program fetch.

The least significant 256 byte of internal data areas (in XXEOOH-XXEFFH, XX is the value specified by IDB register) isinthe
internal RAM area. in addition to the use as an ordinary RAM, the internal RAM has been assigned functionally register bank,
macro-service channel and DMA service channel use. The internal RAM can he used in a way to disable access as ordinary
RAM by resetting (0) bit 6 (RAMEN) of the processor control register (PRC) which is a special function register. In this case it
stili can be accessed as Register Banks.

The higher 256 byte of the internal areas (in XXFOOH-XXFFFH, XX is the value specified by the IDB register) is a special
function register area. The special function register has a register group thatis mapped and has special functions assigned
such as on-chip peripheral hardware mode registers and control registers.

The internal data areas are located in the FFEOOH-FFFFFH location using RESET input, from the initialization of IDB regis-
ter to FFH.

WPD70320/22

Fig. 2-4 Access Conditions for Memory Space

memory access

C programm fetch (data access
000001 - — ﬁ
xxEQOH
| Internal RAM '
X X EFFH
external areas) I X X FOOH
special function
register
X X FFFi
! 1 XX is value designated
fmm——————] by IDB register
| internal ROM
P 22 onl i ! OFFFFFR
— ! (WPD 703 y) | IDB register
L. -__..-__]
memory space internal data area

A. program fetch can access everything except the internal data areas.
B. data access outside of internal data areas or address data access corresponding
to internal RAM areas during internal RAM access disable.

C. if it does not meet conditions in B, data access to the internal data areas takes precedence.

29

WPD70320/22 N E C

2.4.2 Internal Data Base Register (IDB)

This is a register for determining the physical address of internal data areas (areas for internal RAM and special function
register) which can be located in 4 kilobyte steps. The higher 8-bit internal data area base address is designated by the IDB
and the lower 12 bits are fixed at EOOH (beginning address).

The IDB has two addresses assigned: XXFFFH inside the special function register (XX is the value of the IDB register itself)
and the FFFFFH fixed address. The IDB can be modified or referenced by memory access to either of these two adresses
with the same effect.

The IDB is set to FFH at reset time so that the internal data area base address is FFEOOH.

2.4.3 Special Function Register Areas

A group of registers with special functions for on-chip peripheral hardware mode registers and control registers assigned
are mapped to XXFOOH-XXFFFH (XX is the value designated by the IDB register). The IDB register is specially assigned to
both XXFFFH (XX is the value designated by IDB register) and FFFFFH fixed adresses. Program fetches cannot be executed
from these areas.

The special function register is operated by memory access. The additional BTCLR instruction (additional to the
uPD70108/701186) is a special instruction used exclusively for this area and applies to the bitin the areas no matter where the
area is located in the memory space.

Charts 2-4 and 2-5 show a list of special function registers. Meanings of individual items in the chart are as follows:
@® SYMBOL......... symbol which indicates internally stored special

function addresses
coded in the instruction operand column.
OR/W......... indicates whether a given function register is
Read/Write-capable
R/W: Read/Write-capable

R: Read only
W: Write only
@ Operational method each register indicates whether 16-bit operations,
8-bit operations or 1-bit operations are possible.
@ RESET condition...... indicates condition of each register after RESET input XX in the higher 8 bits of an address is speci-

fied by IDB register.
The address part which is not mentioned is reserved. Contents during Read are undefined. Operations during Write have
no significance.

210

N E C wPD70320/22

Table 2-4 Special Function Registers

I i operation| RESET
address name of speC|aI function register Symbol | R/W method CONDOTION

(bit)
I XX FOOH B] port 0 SRR I 7;;7P0 N 7 LMede
XX FO1H port 0 mode register PMO FFH
r)(X 7F02H por! 0 mode control reglster o] Pl\ig(i)?i »OV(;}A-{‘_¥
| XXFOBH | pot1 - R undefined
XX FOSH | port 1 mode register - Y RW | 81 |FFH
XXFOAH | port 1 mode control register - lemot 00H
XX F10H port 2 P2 undefined
XX F71717l;] ;;ort ;m;d; register - PM2 FFH
mrian | ponzmomconorogser ez | | oon |
XX F38Ii_y port T -] PT R ,_‘i__ En»deim;edg
XX F3BH port T mode register | PMT R/W 8/1 O0OH
XXFA0H | external interrupt mode register NTM | | [ooH |
XX Flidl;—un ;xt;n;lin};rrupt macro-service (::J_r;trol register 0 EMSO .
XXH;—TM 7exlernal lnt;}:c;t macro—s;r\;;;a contagwglisg ? A v undefined
XX F46H external interrupt macro-service control re&;;r >277 7EMS’2) R/W 8/1
XX FACH external interrupt request control register 0 N ﬁ‘—E)ZICv:Em
XX FADH external inte;upt request control register 1 | EXIC1 47H
XX FAEH external interrupt request control register 2 J EXCI2
XX F60H receive buffer register 0 ‘ RxBIOI;- R
8 undefined
XX F62H transmit buffer register O TxBO w
XX F65H | serial receive macro-service control register 0 SRMSO | undefined |
XX F66H 7 serial trasmit macro-service control register 0 STMS0
| XX F68H | serial mode register 0 ~ Isomo | RW | en ||
| XXF69H | serial control register 0 scco | L ooH
XX F6AH baTJ;r:w generator register 0 o BRGO
XX FBB;-| serial error register 0 - SCEO R 8 OOHV T
XX FecH | serialaror interrup request conrol regiser 0| SEICO.| T
XX F6DH serial receive interrupt request control register 0 SRICO | R/W 8/1 47H
XX #6;5#; J{s‘enﬁa‘rlit;aﬁnks\m;;nﬁte};u;;;;;;‘é()wrﬂrol register 0 ; STICO ’

21

WPD70320/22 N E C

Table 2-5 Special Function Registers (cont.)

i operation | RESET

address name of special function register Symbol | R/W Imethod (bit\ CONDITIONI
XX F70H receive buffer register 1 RxB1 R
8 undefined
XX F72H transmit buffer register 1 T™xB1 W
XX F75H serial receive macro-service control register 1 SRMS1 undefined
XX F76H serial transmit macro-service control register 1 STMSH1 undefined
XX F78H serial mode register 1 SCMO1 | R/W 8/1
XX F79H serial control register 1 SCC1 00H
XX F7AH baud rate generator register 1 BRG1
XX F7BH serial error register 1 SCE1 R 8 00H
XX F7CH serial error interrupt request control register 1 SEIC1
XX F7DH serial receive interrupt request control register 1 SRIC1 R/W 8/1 47H
XX F7EH serial transmit interrupt request control register 1 STICt]
XX F80H timer register 0 T™MO
XX F82H modulo/timer register 0 MDO
R/W 16 undefined
XX F88H timer register 1 ™1
XX F8AH modulo/timer register 1 MD1
XX FOOH timer control register 0 TMCO
R/W 8/1 00H
XX FO1H timer control register 1 TMC1
XX F94H timer unit macro-service control register 0 TMMSO0
undefined
XX F95H timer unit macro-service control register 1 TMMS1
XX F96H timer unit macro-service control register 2 TMMS2
R/W 8/1
XX FOCH timer unit interrupt request control register 0 TMICO
XX FODH timer unit interrupt request control register 1 TMIC1 47H
XX FOEH timer unit interrupt request control register 2 T™MIC2
XX FAOH DMA control register 0 DMACO undefined
XX FA1H DMA mode register 0 DMAMO 00H
XX FA2H DMA control register 1 DMAC1 undefined
R/W 8/1
XX FA3H DMA mode register 1 DMAM1 00H
I
XX FACH DMA interrupt request control register 0 DICO 47H
XX FADH DMA interrupt request control register 1 DIC1
XX FEOH standby control register STBC R/W 8/1 *undefined|
XX FE1H refresh mode register RFM R/W 8/1 FCH
XX FE8H wait control register WTC R/W 16/8 FFFFH
XX FEAH user flag register ** FLAG R/W 8/1 O0H
XX FEBH processor control register PRC 4EH
XX FECH time base interrupt request control register TBIC R/W 8/1 00H
XX FFFH internal data area base register IDB FFH

212

N E C uPD70320/22

* If the standby control register (SB) is set once, it cannot be reset by instruction. It is cleared by power supply
voltage.

** Bit operations exclusive of bit 3 and bit 5 of the user flag register (FLAG) are of no significance. Also, the
content of user flag 0, 1 (FO, F1) of the flag register can also vary according to the FO, F1 operation of PSW
(See 2.3.12)

2.4.4 Internal RAM Areas

256 byte RAM is stored in XXEOOH-XXEFFH (XX is the value designated by IDB)
The internal RAM is accessed by 16-bit units which enable high-speed processing.

8 register banks are assigned to the internal RAM. The macro-service channel and the DMA service are also overlapped
and assigned.

The internal RAM makes it possible to disable memory access by resetting (0) bit 6 (RAMEN) of processor control register
(PRC). It is also impossible to carry out program fetch from the internal RAM. When memory access has been disabled no
access other than access as register is possible.

Fig. 2-5 Internal RAM Area Map

15 0

DMA service channel/ 15 87 0

x> E00H] macro-service X xE0OH SARO DMA
15 0 channel 0|4, .
, - « - . DARO service channel
/['macro-service channel X xE08H| macro-service “
X XE00H channel 1 o [sammo [varno | (channel 0)
X X E10H o o
' ‘E C
register bank 0 2 EX;MH L PO
X X E1FH e xxE1gH JrosH SARL
Treon By ’ DARY (channel 1)
1 x x E20H 4 SARH1 I DARH1
X X E3FH
x X E40H X xE28H % #EOFH rc1
5
2 15 87 0
% x ESFH X E30H 6 POl spwp [Msc
X X E60H — macro-service channel
X E38H reserved| SCHR
3 Ay 7 MSP
X X E7FH ¥ ¥ E3FH (8 byte x 8 channels)
X X E8OH 15 0 T MSS
4 +00H} reserved
x x E9FH vector PC’
XX EAOH PSW save
s | Pty SarE]
PC save
x x EBFH 50
x x ECOH]
6 SS register bank
X x EDFH Ps (32 byte x 8 banks)
X x EEOH DS1
7 N
x X EFFH x
internal RAM area (256 byte) BP
sp
BW
DwW
Ccw
- 1FH AW

wPD70320/22

NEC

2.4.5 Vector Table Areas

Inthe 1 kilobyte area of 00000H-003FFH, the interrupt requests and thv.a interrupt routine starting addresses correspond-
ing to the break instructions are retained by the 256 vector portion (using 4 bytes for each vector)

vector 0 (00000H) :
1 (00004H) :
: NMl input

vector
vector 2 (00008H)
vector
vector
vector 5 (00014H)
vector
vector

vector 8 (00020H)

vector 19 (0004CH) :
vector 20 (00050H) :

vector 21 (00054H)

vector 27 (0006CH) :
vector 28 (00070H) :
vector 29 (00074H) :
vector 30 (00078H) :
vector 31 (0007CH) :
vector 32 (00080H) :
vector 33 (00084H) :
vector 34 (00088H) :
vector 35 (0008CH) :

vector 36 (00090H)

vector 46 (000B8H)

vector255(003FCH):

3 (0000CH) :
4 (00010H) :
: CHKIND instruction
6 (00018H) :
7 (0001CH) :

divide error

single step

BRK 3 instruction
BRKYV instruction

reserved

FPO instruction

. reserved

reserved

input/output instruction

: reserved

reserved
INTSERO
INTSRO
INTSTO
reserved
INTSER1
INTSR1
INTST1

reserved

- INTDO
vector 37 (00094H) :
vector 38 (00098H) :
vector 39 (0009CH) :
vector 40 (000AOQH) :
vector 41 (000A4H) :
vector 42 (000A8H) :
vector 43 (000ACH) :
vector 44 (000BOH) :
vector 45 (000B4H) :

INTD1
reserved
reserved
INTPO
INTP1
INTP2
reserved
INTTUOI
INTTU1

L INTTU2
vector 47 (000BCH) :
vector 48 (000COH) :

INTTB
user area
BRK imm8 instruction
INT input

N E C uPD70320/22

In vectors 0-47, the interrupt vectors are designated (part of reserved area) and are not available for general use.

In vectors 48-255, they are for general use and can be used with 2 byte break instructions and the INT input. In the unused
portions, they can be available for uses other than vectors.

The vectors are comprised of 4 bytes and the higher 2 bytes are loaded to the program segment PS while the lower 2 bytes
are loaded to the program counter PC.

Example Vector 0 000H ; 001H PC - (000H. 001H)
002H . 003H PS- (002H. 003H)

2.4.6 External Memory Areas

The pPD70322 can expand the external memory (ROM, RAM, and others) to the 00000H-FBFFFH aréas.

The uPD70320 connects external memory (ROM, RAM, and others) to the 00000H-FFFFEH areas. However, the FFFOOH-
FFFEFH and the FFFFCH-FFFFEH areas are reserved. _

The external memory is accessed by using address bus (A0-A19), data bus (D0-D7), and the MREQ, MSTB, and R/W sig-
nals. ltalso provides a refresh pulse output terminal (REFRQ) for pseudo-static memory refresh use. A pseudo-static memo-
ry can easily be connected, due to a function for automatic outputting of refresh address for dynamic memory refresh use;
also the dynamic memory may be easily connected. Itis also possible to insert wait cycles during the memory cycles in 128
kilobyte steps using software (See 4.1).

2.4.7 Internal ROM Areas

The uPD70322 has an internal mask ROM in the FCOOOH-FFFFFH areas. However, the FFFOOH-FFFEFH area is used for
testing internally and is not available for general use. The 4 byte FFFFCH-FFFFH are reserved. As a result, total 16140bytes
can be utilized as a ROM area.

The internal ROM has an exclusive bus between the instruction queue so that the external memory space can carry out
prefetch separately and rapidly which makes possible rapid instruction execution (Prefetch is possible with one clock, while
external memories require a minimum of two clocks).

2.5 1/O Space

The uPD70322/70320 has a 64 kilobyte I/0 space in addition to a 1 megabyte memory space. Fig. 2-6 shows a map of /O

space. The I/O space is accessed by using address bus (A0-A15), data bus (D0O-D7) and IOSTB, R/W, DMAAKO, and

DMAAKT{ signals. 0 is output from the unused address bus’s higher 4 bit (A16-A19). Insertion of wait cycles in the I/O cycle
is software-specified.

Fig. 2-6 170 Map (64 kilobyte)

0000H
65280 bytes
FFOOH
reserved
FFFFH

215

WPD70320/22 N E C

3. INTERRUPTS
3.1 Interrupt Controller

The uPD70322/70320 has a high performance interrupt controller which controls multiprocessing of interrupts arising
from 17 possible sources. The 17 interrupt sources in this interrupt controller are divided into a group of five external and 12
internal sources for control which carry out programmable multiprocessing control in groups. It is also possible to select
from three types of response methods according to the characteristics of the interrupt sources: vector interrupt function,
register bank switching function, and macro-service function.

External interrupts can be easily expanded by connecting the interrupt controllers like the uPD71059 and others.

Instructions of the interrupt controller are defjned by the interrupt control register which is provided for each interrupt
source and by the macro-service control register.

Eland Dlinstructions are for all the interrupts, RETland RETRBI instructions are for return from interrupt, and FINT instruc-
tion is used to indicate that interrupt processing for interrupt controller is completed.
3.2 Interrupt Sources

The uPD70322/70320 has 5 external and 12 internal sources. The 17 interrupt sources are divided into eight groups and
are managed by the interrupt controller. The configuration inside this group is fixed by hardware. For the 8 groups of inter-
rupts priority from 0-7 (0 being the highest), excluding NMI and INTR, and 5 groups of interrupts except INTTB can be arbi-
trarily set using software. The function supported by the interrupt controller differs according to interrupt source.

Interrupt sources are listed in Table 3-1.

31

N E C pPD70320/22

Table 3-1 Interrupt Sources

1nternal/7: macro- | bank- priority D
Interrupt Source External | VECIOT | service |switching| easter |oetwoen aroups) imside grous | contrel
NMI
(Non Maskable Interrupt) E 2 (none none ne 0 - no
|
INTR external
(INTerrupt Request) E input none none no 7 - no
INTTUO 44 1
(INTerrupt from Timer Unit0O)
INTTU1
(INTerrupt from Timer Unit1) f 45 ves yes yes 1 2 yes
S b
INTTU2 46 3
(INTerrupt from Timer Unit2)
INTDO 36 1
(INTerrupt from DMA channel0)
| no yes yes 2 yes
INTD1 37 2
(INTerrupt from DMA channelt)
INTPO 40 5
(INTerrupt from Peripheral 0)
— I
INTP1 |
(INTerrupt from Peripheral 1) E 4 yes yes ves 3 2 yes
INTP2 42 3
(INTerrupt from Peripheral 2)
INTSERO
INTerrupt from 28 no 1
erial ERror of channel0)
5 I R
INTSRO |
(INTerrupt from 1 29 | yes yes yes 4 2 yes
Serial Receiver of channelQ)
INTSTO
(INTerrupt from 30 yes 3
Serial Transmitter of channelQ)
i
T
INTSER1
(INTerrupt from 32 no 1
Serial ERror of channel1) E
! S
|
INTSR1 |
(INTerrupt from | | 33 yes yes yes 5 2 yes
Serial Receiver of channell) 1
- -
INTST1
(INTerrupt from 34 yes 3
Serial Transmitter of channel1) {
INTTB t no
(INTerrupt from | 47 | no no (fixed 6 - yes
Time Base counter) I at7)

3.2

wPD70320/22 N E C

3.3 Interrupt Controller Functions

The interrupt controller regulates the priority among interrupts when interrupts with same priority occur simultaneously.
3.3.1 Multi-interrupt Priority Control

Multi-interrupt priority control is carried out in group units for interrupt excluding interrupt response using NMl and INTR,
as well as macro-service.

Interrupt multiprocessing control is carried out in El condition. As a result, when allowing multiprocessing itis necessary
to change to El condition during interrupt processing routine. In multiprocessing control, if interrupt requests with a higher
priority than the interrupt being processed are received, the interrupt being processed is discontinued, and processing of
interrupts with higher priority is carried out. If the priority is below the priority of the interrupt being processed, thatinterruptis
held. If, for the interrupt held the interrupt mask bit of the interrupt control register (provided for each interrupt source) is not
set during the interrupt processing routine being executed and if the interrupt request flag is not reset, the interrupt being
held will be accepted at the end of the current interrupt.

Ininterrupt response exclusive of NMI, INTR and software interrupt (incl. trap), it is necessary to execute the FINT instruc-
tion in order to indicate to the interrupt controller that the interrupt processing routine has been completed at the very last
part of the interrupt processing routine. If this instruction is not executed, all succeeding interrupts will be received as having
a priority not higher than the interrupt for which the FINT instruction has not been executed. The FINT is not necessary atthe
end of the NMI and INTR service routine. Interrupt response using NMi and INTR as well as macro-service functions do not
contain multiprocessing control so that it can be received if it is in an enable mode (always for NM).

The eight priority levels from O to 7 (0 has the highest priority) can be set up arbitrarily for each interrupt group. The priority
simultaneously indicates the number of switching destination register banks when using the register bank switching func-
tion which will be described later. Priority is established by using the three bits PRO-2 in the interrupt control register which is
provided for each maskable interrupt source. However, when setting this up, only the interrupt control registers of the inter-
rupt sources which have the highest default priority inside the interrupt groups can be programmed, the others are ignored
and use the default values inside the group.

3.3.2 Priority Control during Simultaneous Generation of Interrupts

NMI is the highest and INTR is the lowest of the priorities possible during simultaneous generation of interrupts. Priority
exclusive of NMIand INTR is exactly the same as for the priority of multi-interrupts. Among the groups with the same priority, it
complies with the priorities fixed by hardware (default priority). Even in an identical group, it complies in exactly the same
way with the priority inside the group.

3.4 Interrupt Response Method

The pPD70322/70320 has three types of interrupt response method: vector interrupt function, bank switching function,
and macro-service function. All of these functions can be selected to fit the purpose of the interrupt. The interrupt controller
reacts to the interrupt requests according to the response method set up by the interrupt control register.

When receiving an interrupt using a vector interrupt function and a register bank switching function, the contents of PC,
PS, and PSW are saved using the method applied to that functions. After PSW has been saved, each BRK flag is reset. As a
result, single step interrupt and interrupt exclusive of interrupt response using NMI and macro-service are disabled (soft-
ware interrupt exclusive of single step interrupt takes place) (See 3.9).

3.4.1 Vector Interrupt

When interrupt s received using vector interrupt, present contents of PSW as well as PC and PS contents are saved to the
stack, a vector is selected from the vector table and is executed as an interrupt processing routine from the address indi-
cated by the vector. All vectors are fixed except the INTR vector. When working with an INTR interrupt, an acknowledge cycle
takes place and an interrupt vector is taken from the data bus (See 3.6 INTR). Interrupt vectors exclusive of INTR are indi-
cated in Table 3-1. Return from interrupt is carried out by RET! instruction, however, when carrying out return from interrupts
exclusive of NMl and INT, itis necessary to execute the FINT instruction. When carrying out return from interrupt, PC, PS, and
PSW are returned from the stack.

3.3

NEC uPD70320/22

Fig. 3-1 Operations for Interrupt Receive carried out in 1-4 order

vector table

stack
nx4
SP-6
nx4+2
- Sp-4
—d SP~2
n : vector number ®
v
@ SP—SP-6
PC —
D
0]
PS
rsw
1E =0
®(BRK=O

3.4.2 Register Bank Switching Function

In the uPD70322/70320, the general purpose register sets are mapped in internal RAM and can contain a maximum of 8
register banks. These register banks are switched automatically during interrupt response and it is not necessary to carry
out save processing to the stack of register groups which until now have been carried out using software and soitis now pos-
sible to respond to interrupt requests very fast.

When using register bank switching function, the ENCS bit of the interrupt control register which has been provided for
each maskable interrupt source is set (1). One register bank can be designated for each interrupt group and it has the same
number like the multiprocessing priority and is designated by PRO-2 of the interrupt control register.

The register bank switching sequence is carried out in the following way (Fig. 3-2)

(1) PSW contents are saved to a temporary register.

(2) register bank is switched.

(3) IE=0,BRK=0.

(4) the PC contents and the PSW in the temporary register are saved respectively to the save areas of the new register bank
(5) the offset of the start address of the interrupt processing routine is loaded from the vector PC area to PC.

The register banks are thus switched and the interrupt processing routine is executed.

Return from register bank switching interruptis carried out by executing RETRBI instruction after executing FINT instruc
tion (the use of register bank switching function is limited to receiving of maskable interrupts). When RETRBI instruction i
executed, PC and PSW are respectively reloaded from the save areas of the register banks as indicated in Fig. 3-3. (recoven
of register banks is not carried out using RETI instruction so that return to main program can normally not be executed

When using the register bank switching function, it is necessary to initialize beforehand the PS from the register bank o
the switching destination, the vectors PC, SS, and SP. The other registers should be initialized as needed. However, care
must be taken with PC when modifying during the interrupt processing routine.

The register bank switching function can be used only for one interrupt in each interrupt group with the same priority
(See 3.7 (1) IF).

34

WPD70320/22 N E C

Fig. 3-2 Register bank switching sequence

new register bank for
old register bank 9

(before interrupt) interrupt processing
AW AW
cw cw
ow hw
Bw BW
SP sp
BP BP
1X 1X
Y Y
DS1 DS1
PS PS
S§s §s
nso nso

save PC save PC
save PSW — save PSW
vector PC ® vector PC
reserved reserved

Psw tempor: i —
o) porary register

(2) register bank switching
(3) IE-0, BRK=0

3.5

N E C WPD70320/22

Fig. 3-3 Register bank return sequence

old register bank

(before interrupt) register bank for interrupt processing
AW AW
cw cw
hw hw
BW BwW
SP sp
BP BP
1X X

bst \I———-— DS1

PS PS
SS SS
bso pso
save PC save I’C
save ’SW save PSW
vector PC —1 vector PC
reserved reserved
@
PSW (0]
rc

3.6

WPD70320/22 N E C

The macro-service function is a function which carries out data transfer between special function register areas and the
memory space depending on the interrupt request. The function makes is possible to reduce the overhead (operations for
save, initialization, and return of registers) on interrupt processing making it unnecessary to carry out simple processing of
simple data transmission by interrupt processing using software. ltis also unnecessary to execute program when proces-
sing with macro-service and it is now possible to process a portion of data with effective programming results which have
traditionally been processed in 1 byte units using software. The macro-service function differs from other interrupt response
modes in that the IMK bit (interrupt mask bit) of the interrupt control register which has been provided for every interrupt
source is reset and macro service will be operated if the MS/INT bit (macro-service enable bit) is setwhether itisin El orin DI
condition (See 3.7).

There are two types of operational mode for the macro-service function as follows:
(1) Normal mode

a pre-established number of data transfers are carried out, one byte or one word for every interrupt request occurrence.
(2) Character search mode

One byte of data transfer is carried out for each interrupt request occurrence until a pre-established number of bytes has
been transferred or the data coincide with pre-established 8-bit data.

The macro-service function is controlled by macro-service channels specified by macro-service control registers; a
macro-service control register is provided for each intersupt source for which macro-service is possible.

The macro-service control register is configured as indicated in Fig. 3-4 and are within the special function register area.

Fig. 3-4 Format of Macro-Service Control Register

7 6 5 4 3 2 1 0
MSM2 MSM1 MSMO DIR 0 cnz CH1 CHo
macro service mode specifies the direction macro-service
specification of data transfer channel (0-7)
specification

000: normal mode 0: memory-special function

(8-bit transfer) register
001: normal mode 1: special function

(16-bit transfer) register--memory

100: character search mode
(8-bit transfer)
use of other combinations
is prohibited

The macro-service channel is assigned to the XXEOOH-E3FH (XX is value designated by IDB) of internal RAM, as shown
in Figure 3-5. The macro-service channel is used to define the transfer destination, transfer source, number of transfers,
search character for the macro-service data and one can use a maximum of eight channels.

3.7

N E C WPD70320/22

Fig. 3-5 Configuration of Macro-Service Channel

XX EO0OH

Macro-Service Channel 0
EO7H

E08H

EOFH +$0H
E10H

SFRP MSC

E17H reserved SCHR
E18H

E1FH MsP

E20H

MSS
4 +7H

E27H
E28H

E2FH
E30H

E37H
E38H

XX E3FH

MSC (+0H): Number of transfers carried out by macro-service.

SFRP (+1H): Offset value of special function register address, XXFOOH+SFRP
(XX is specified by IDB) is special function register address.

SCHR (+2H): 8-bit data compared during character search mode

MSP (+4H): Offset value of memory address which is object of macro service
data transfer

MSS (+6H): value of memory address segment which is object of data transfer
in macro-service. The memory address which is the object of data
transfer is MSS x 16 +MSP.

The MSC of the macro-service channel is decremented (—1) after each data transfer (8-bit/16-bit), MSP is incremented
(+1). Afterwards the interrupt request flags are cleared unless when MSC is 0 or when the transferred data is equal with the
search data (only during character search mode), the interrupt request flags force an interrupt by not being cleared.

3.5 NMI (Non-Maskable Interrupt)

The NMI is the highest priority interrupt which cannot be disabled. This interrupt is edge-detected. The direction of the
edge is selected by the special function register INTM register bit 0 the ESNMI bit. When ESNMI bitis 0 and when the comple-
tion edge is 1, interruptis generated by the starting edge. This interruptis capable of vector response only and the vector type
is fixed at 2. This input is used in conjunction with terminal P10 and the level can be checked by reading P10. When NMlis
received it causes the DI condition and disables other interrupts.

3.6 INTR (Interrupt)

INTR is a maskable interrupt and the interrupt is detected by level (active high). INTR does not receive multiprocessing
control by using interrupt controller and if itis an interrupt enable condition (IE=1) it can be received at any time. However, its
priority when there is a simultaneous generation of interrupts is the lowest. The INTR is capable of vector response and the
vector address is supplied from the data bus by the interrupt acknowledge cycle. The interrupt acknowledge cycle is defined
via INTAK ouput. The INTR terminal is used in conjunction with P14 and POLL and is selected by bit 4 of the special function
register port 1 mode control register (PMC 1). As a result, interrupt does not take place even in interrupt enable condition
(IE=1) when the INTR function is not selected. INTAK is used in conjunction with P13 and INTP2 and the function is selected
using PMC1 bit 3.

The external interrupt input can be expanded to a maximum of 64 by connecting the uPD71059 interrupt controller.

When the interrupt is received, it causes the interrupt disable condition (IE = 0)

3.8

WPD70320/22 NE C

3.7 Interrupts other than NMI and INTR

The interrupts other than NMland INTR receives multiprocessing control using the interrupt controller. When the interrupt
is accepted, the interrupt is automatically set in disable condition (IE = 0). However, when an interrupt with a priority higher
than that of the interrupt being processed is generated, that interrupt can be accepted by setting it in an interrupt disable
condition during interrupt processing routine. When an interrupt is generated with lower or with same priority, the interrupt is
held over.

The 15 interrupt sources are divided into six priority groups. It is possible to set up arbitrarily 8 levels from O to 7 (0 being
the highest) of priorities for each group. However, the priority for INTTB (Time Base Counter Interrupt) is fixed at level 7 by
hardware. These priority levels also express the numbers of switching destination banks when using the bank switching
function. The priorities are initialized at level 7 by resetting.

When interrupts are generated simultaneously, the interrupt in a group established with higher priority is accepted. When
interrupts which have been set up on the same level are generated simultaneously, the one with the highest priority among
the groups which are fixed by hardware and software and inside the same group with the highest priority inside that group
which is fixed by hardware, is accepted.

Each interrupt source has a register for interrupt control used inside the special function registers. The bit configuration
of this control register is indicated in Fig. 3-6.

Fig. 3-6 Format of Interrupt Request Control Register

7 6 5 4 3 2 1 0

|
\
¥ \ INK MS N ENCS 0 PR2 PRI PRO

(1) IF (Interrupt Flag)

Flag indicates that there is an interrupt request. It indicates that there is an interrupt request and indicates that it is not
served. This flag is set by the generation of the interrupt requests and is reset by interrupt acceptance, by BTCLR instruction
(an instruction additional to the uPD70108/70116), and by other instructions.

(2) IMK (Interrupt Mask)

A bit which sets up interrupt mask. 1 indicates that interrupt is masked, 0 indicates that mask has been released.
(3) MS/INT (Macro-Service/Interrupt)

This is a bit which specifies whether an interrupt response is processed by macro-service or by vector interrupt or
register bank switching function; 1 is used for macro-service function, 0 for vector interrupt or register bank switching
function.

(4) ENCS (Enable Context Switching)

This is a bit which specifies whether the register bank switching function is used or not; 1 indicates that register bank

switching function is used; 0 indicates that vector interrupt is used.

(5) PRO-2 (Priority 0-2)

This are the bits which indicate the priority of the interrupt group with specifications from 0 through 7. This specification is
possible only for the interrupt registers which have the highest priority within the group and specification by other interrupt
control registers is invalid. (During Read, 7 is fixed).

These priorities indicate the number of the register banks for switching destination within the register bank switching
function.

3.8 External Interrupt

There are five external interrupt sources. Among these INTR is detected by level and all others are detected by edge. For
the interrupts which are detected by edge exclusive of INTR the respective effective edges are designated by the external
interrupt mode register (INTM) of the special function registers.

3.9

N E C wPD70320/22

Fig. 3-7 Format of External Interrupt Mode Register (INTM)

Symbol 4 § 5 M 3 2 ! 0 Address

INTM XX F40H
0 ES2 [] ES1 0 ESO0 0 ESNMI

ESNMI: Designation of effective edge for NMl input
ESO-2: Designation of effective edge of iNTPO--2 input
Effective edge: O: falling edge

1: rising edge
3.9 Software-Activated Interrupts

The uPD70322/70320 has a total of eight types of interrupts using software (Table 3-2). Six types are compatible with
interrupts for yPD70108/70116 software (there is no interrupt for emulation mode, however). The other two types of inter-
rupts have a special function for the uPD70322/70320.

The vectors for these interrupts are predefined.

When conditions for generation of that interrupt are realized - exclusive of BRK interrupt (single step interrupt) - it is
accepted as usual (it has a greater priority than hardware interrupt). However, the BRK flag interrupt is generated when BRK
=1 (with no distinction made for hardware or software) and when the interrupt is accepted the BRK flag is automatically reset
sothat it has a lower priority than the other interrupts (for both hardware and software) and the BRK flag interruptis notgene-
rated during interrupt processing.

Table 3-2 Software Interrupt

interrupt source vector | priority

DIVU divide error

DIV divide error 0
k‘a-lKIND boundary overflow 5 1
B

BRK 3 3

BRK imm8 48-255

BRK flag (single step) 1 2

input/output instruction (IBRK flag) 20

FPO instruction 7

3.9.1 General Software Interrupts
The execution sequence for receiving of software interrupt exclusive of input/output instruction interrupt and FPO ins-
truction interruptis identical to that of the vector interrupt. In other words, the address information for the following instruction
(PC) and PSW are saved to the stack, IE = BRK = 0, and vector contents are loaded to PS and PC.
Each software interrupt is described as follows:
(1) DIVU divide error, DIV divide error.
Always occurs when a quotient overflow occurs due to the execution of a division instruction.
(2) CHKIND boundary overflow.
Takes place when it is determined whether the index value has exceeded the boundary by executing instruction
(CHKIND) which checks to see if the index value has exceeded the boundary of predefined arrays.
(3) BRKV
Qccurs when V (overflow flag) is set during execution of BRKYV instruction.
(4) BRK3
Occurs with execution of BRK3 instruction.
(5) BRK imm
Occurs with execution of BRK imm instruction.
(6) BRK flag (single step)
When BRK is set at 1, occurs every time one instruction is executed.

3.10

uPD70320/22 N E C

3.9.2 Input/Output Instruction Interrupt

When IBRK = 0, interrupt takes place when an input/output instruction is attempted. The address information which is
saved to stack when this interrupt is accepted differs from ordinary interrupt using software (see 3.91) in that it goes to the
address where the input/output instructions are located. When the prefix is added to that input/output instruction, it goes to
the address where the prefix is located. The other operations are the same as for ordinary interrupt using software. When
returning from input/output instruction interrupt, itis necessary to adjustthe PC value in the stack in order to return to normal.
It is possible to use software to find out exactly which instructions have been executed to cause interrupt generation by
making the address information which has been saved to stack the lead address. This function facilitates the transplantation
of programs which have previously been used with the uPD70108/70116.

The contents of PSW are saved to stack immediately before interrupt has taken place and afterwards the flags are set
automatically so thatIE=BRK=0 and IBRK=1. IBRK is set to 1 so that the input/output instruction/during interrupt processing
are executed as input/output instructions and it is automatically returned to the original condition (IBRK=0) by return from
interrupt

Example 1: 1/0 instruction without prefix

Address Instruction
00183H oUT ADX
0183H -SP
PS
PSW
Stack
Example 2: 1/0O instruction with prefix
Address Instruction
0183H REP
0184H IN?K 0183H <sP
PS
*Mkps-;vgi
Stack
Reference: Normal software interrupt
Address Instruction
0183H BRK3
: -—01;84va «+SP
Ps |
o PSW
Stack

3.9.3 FPO Instruction Interrupt

The external bus configuration of the yPD70322/70320 differs from that of the uPD70108/70116 in that the coprocessor
for use in floating point operations can not be connected. As a result, when the use of the FPO instruction is attempted with
this coprocessor, an interrupt is generated for the purpose of emulating the operation of the instruction. The PC value of this
interrupt which is saved to stack becomes the starting address (see 3.9.2 for input/output instruction interrupt) (the prefix
lead address when the prefix has been attached). As a result, the FPO instruction is decoded and software emulation is pos-
sible. Itis necessary to adjust the PC value which has been saved to stack when returning from FPO instruction interrupt just
as with the input/output instruction interrupt.

an

N E C wPD70320/22

4. Bus Control

The uPD70322/70320 has bus control pins as shown in Table 4.
When using a multi-function pin, it is necessary to select the desired function by means of the port mode control register
(FMCn).

Chart 4-1 Pin Functions for Bus Control

Name of Pin| P/ Function Comments
_ | Output

A0—A19 Output| address bus

. Input/
D0-D8 Output data bus

R/W Output| read/write identification

MREQ Output| indicates memory cycle

MSTB Output| strobe signal for memory read/memory write

I0STB Output| strobe signal for I/0O cycle

REFRQ Output| indicates memory refresh cycle

HLDRQ Input bus hold request signal for use with P27
HILDAK Output| bus hold acknowledgement signal use with P26
DMAAKD >Output indicates DMA acknowledgement cycle for use with P21
iﬁﬁﬁr}%ﬁbutput indicates DMA acknowledgement cycle for use with P24
READY Input insert wait in external bus cycle for use with P17
INTAK —Bﬁtput indicates interrupt acknowledgement cycle |for use with P13 and INTP2
POLL Input | polling in;;ut " tor use with P14 and INTR

4.1 Programmable Wait Function

The uPD70322/70320 insertion of wait state during bus cycle (exclusive of the memory refresh cycle) can be specified by
software. It specifies a 1 megabyte memory space in 8 units of 128 kilobyte and I/O space using the wait control register
(WTC) as shown in Fig. 4-1. However, memory space block 6 (CO00H-DFFFH) and block 7 (EO0OH-FFFFFH) and are setup in
the same way.

The wait state specification can easily be programmed independent for each block with one out of four possibilities using
READY pin with 0,1, 2 and more cycles, as indicated in Chart 4-2. When using READY pin control, the READY pin is used in
conjunction with P17 so that bit 7 of port 1 mode control register (PMC1) must be setat 1. When bit 7 of PMC1 is 0, READY con-
dition or wait state always goes to 2 state. If control by READY terminal is selected 2 wait states are inserted regardiess of the
READY pin condition. The READY pin is level-triggered and in case of a low level wait states are inserted.

Accessing of internal ROM (uPD70322 only) and internal data areas is not influenced by the programmable wait func-
tions. This set-up applies to access of everything in the external areas with the exception of refresh time.

The WTC register is initialized to FFFFH at reset time.

41

WPD70320/22 N E C

Fig. 4-1 Format of Wait control Register (WTC)

15 M 13 1211 109 8 7 6 5 4 3 21 o0
Symbol address

wre s‘l)/a%e B;‘.OCGK nugcx BLf:CK uLgcx BLgCK m,(l)cx m.(;cx % FE8H
I—BLOCKO 00000H-1FFFFH
BLOCK1 20000H-3FFFFH
BLOCK2 40000H-5FFFFH
BLOCK3 60000H-7FFFFH
BLOCK4 80000H-9FFFFH
BLOCKS AOOOOH-BFFFFH
BLOCK6,7| COO0O0OH-FFFFFH
1/0 space| 0000H- FFFFH

Table 4-2 Designation of wait State

BLOCKn/I/O space Wait state
00 0 state
01 1 state
10 2 state
11 2 state + READY pin

4.2 Bus Hold Function

The uPD70322/70320 has a bus hold function. Input of external high level to HLDRQ terminal indicates that the external
element wants to use the bus. When the uPD70322/70320 detects that the HLDRQ terminal is high level, it puts all of the
A0-A19, DO-7, MREO, MSTB, and IOSTB outputs on high impedance, puts the HLDAK terminal on low level, and indicates
that the external elements have been opened to the buses and switches to the hold mode. During the hold mode, the
uPD70322/70320 stops execution of instructions and reception of prefetch data. Only the on-chip peripheral hardware
which does not use a bus is operated. When the HLDRQ pin is checked and a low level is detected during hold mode, the
HLDAK signal is placed on high level, this is an indication that the bus is not opened any more to the external elements, and
execute is restarted after a one clock interval.

Even during HALT mode (one type of standby function: see 11.2), the bus hold requirement can be received and when the
hold mode is released (if the HLDRQ signal is low level), it returns to HALT mode. The hold mode conditions is the same as
normal mode.

During execution of one instruction following BUSLOCK prefix and during interrupt acknowledge operation, bus hold
requests are not accepted.

The uPD70322/70320 can execute insertion of memory refresh cycle during hold mode and it is executed by setting
refresh mode (RFM) register HLDRF (bit 6). The HLDAK signal is forced to a high level for each refresh timing and the refresh
cycle is carried out after confirming that HLDRQ has gone to low level. Afterwards, if the HLDRQ signal reaches high level, it
again shifts to the hold mode. If the HLDRQ signal remains at low level, the hold mode is released and instruction execution is
restarted. Since HLDRQ pin is combined with P27 and HLDAK with P26, to use the bus hold function itis necessary to set bits
6 and 7 of the PORT 2 mode control register (PMC2) to 1.

4.2

N E C wPD70320/22

4.3 Refresh Function

The pPD70322/70320 has a number of functions for refreshing of DRAM and the pseudo-SRAM. There are functions for
insertion of refresh cycle on a regular basis for a series of bus cycles, for outputting of refresh address for the support of the
DRAM and pseudo-SRAM power down self refresh mode, a function which generates a refresh cycle during HALT mode and

a function for the insertion of wait state during refresh cycle.
4.3.1 Refresh Mode Register (RFM)

The RFM register is an 8-bit register which enables refresh function control. It can be accessed with 8/1-bit Read/Write
operations using memory access.

The RFM register is initialized at FCH during reset.

The RFM register has the following bit functions and configuration:

symbol
address 7 6 s 4 3 2 1 0 4

RFM | RFLV | HLDRF | HLTRF | RFEN RFW1 RFWO RFT1 RFTO XX FE1H

RFTO] are bits which specify refresh synchronization.
Refresh synchronization is selected from time base counter (see 7.1) output taps 3-6. Refresh cycle is generated at syn-
chronous intervals as shown in Table 4-3.

Table 4-3 Refresh Synchronization

fCLK = 5 MHZ (= %2 fx; fx = 10MHz)

R [;T R:';T refresh cycle
0 0 2/ feux ((3.2u8)
0 1 25/ fcuk (6.4us)
1 0 2%/ fcux (12.8us)
1 1 27/ fcux (25.6us)

RFWO || RFW1 |-- are bits which specify the number of wait states to be inserted during refresh cycle.
The number of wait states during refresh cycle is defined by designation of RFWO, 1independently of previously descri-

bed programmable wait function (see 4.1) as shown in Table 4-4.

4.3

wPD70320/22 N E C

Table 4-4 Wait State during Refresh Cycle

RFW | RFW
1 0 wait state
0 0 0 state
0 1 1 state
1 0 2 state
1 1 2 state

RFEN| is a bit which enables automatic insertion of refresh cycles
When itis 1, it permits automatic insertion of refresh cycles, when itis 0, it disables automatic insertion of refresh cycles,
REFRQ pin output is controlled by RFLV bit contents (for further details, see description of RFLV bit).
is a bit which enables automatic insertion of refresh cycles during HALT mode.

1 indicates enabling of automatic insertion, and 0 indicates disable. However, when RFEN bit=0, it is disabled regardles
of the HLTRF bit contents.

HLDRF | is a bit which enables automatic insertion of refresh cycles during hold mode.

1indicates enable, 0 indicates disable. When in enable condition (1), it is forced to start HLDAK output at high level for
each refresh timing, and inserts refresh cycle automatically.
RFLV/| is a bit which defines the output level for REFRQ signal.

Fig. 4-2 indicates the circuit configuration. Output is determined logically as in Chart 4-5.

The RFLV bit becomes master RFLV output at read time and is written for RFLV slave. Writing of master RFLV is carried out
when refresh timing takes places.

Use of the RFLV bit enables support of power down self refresh mode for pseudo-SRAM.

Fig. 4-2 Control Circuitry Using RFLV Bit
RD WR

Data Line
> >
slave RFLV Master
RFLV

refresh timing

refresh cycle

RFEN

Table 4-5 Output Level for REFRQ Signal

RFLV | RFEN REFRQ condition
0 0 0
0 1 0
1 0 1
1 1 refresh pulse output

4.4

N E C uPD70320/22

Insertion of refresh cycle is carried out when RFEN bit goes to 1. At this time, MREQ, MSTB, and IOSTB go to high level,
refresh address is output to A0-A8 and the high level is output to A9-A19, and refresh pulse is output from REFRQ pin.

Care must be taken when using the bit operation instructions as the RFLV bit does not go to read data up to the following
refresh timing even with write.

4.4 Bus Usage Privileges

The priority for bus usage privileges for the yPD70322/70320 is as follows:
(1) Refresh cycle (see 4.3)

The refresh cycle will always take place if insertion of the refresh cycle is enabled. However, if insertion of refresh cycle at
time of hold mode is enabled during hold mode, HLDAK signal is forced to high level and refresh cycle is carried out while
waiting for HLDRQ signal to go to low level.

(2) Hold mode (see 4.2)

The system goes into the hold mode except during execution of one instruction following BUSLOCK prefix and during
interrupt acknowledgement cycle.
(3) DMA cycle (see 5)

(4) Normal bus cycle

However, other requests are temporarily retained in the following cases:

® During execution of interrupt acknowledgement cycle and processing related to it.

@ During execution of instructions with BUSLOCK prefix. Bus will not operate during stop mode. (See 11, Chart 11-2 for

bus conditions).
4.5 Bus Timing
Figs. 4-3 through 4-10 show principal bus timings (exept for DMA)

Fig. 4-3 Memory Read Fig. 4-4 Memory Write Fig. 4-5 1/0 Read Cycle Fig. 4-6 1/0 Write Cycle
Cycle Cycle

T1 T2 T1 T2 11 12 T1 T2
Y cLK [\I\J ax S\ ax NS
Av-1s) 4 Ao-19) [no-15)

R/W y r/W -{ [R/W |

c

7T
3

L

<

. A
mea | _| [miea T _| [[st _| /| wsm@l _| /|
w T\ T e
Do-7 irh :)—- o7 4+—{ L po-7 { L po-7 +—{ -
Fig. 4-7 Memory Read Fig. 4-8 Refresh Cycle
Cycle (During insertion (During 2 Wait State)
of 1 wait state)
T1 jTAW | T2 T1 | TAW | TAW | T2
N AWAR AW N AWAWAWAW
A0-19 r A0-19 L

R/AV L A 2

wmEq |\ [T mea| _ T
msTe |\ [T st \ Imn
Do-7 o

45

WPD70320/22

NEC

Fig. 4-9 Memory Write
Cycle (During operation
with READY terminal)

T1 TAW § TAW | TW TW 4. T2

Fig. 4-10 Refresh Cycle
(During insertion of 1
wait state)

Tl TAW T2

ax YUY e AU

A0-8

[e\ []

READY

o-7 4—{

CLK

AO-19

R/W

[0STB

REFRQ

Do-7

HLDRQ

A\ [l

Fig. 4-11 Bus Hold Accept
and Release Timing

T2—e] To

ULy

}_.
Fig. 4-12 Refresh Cycle
during Hold Mode
(0 number of wait states)
Ti
oLk MJ WAWAWAWE
ATGAR 1 |
[
HLDRQ l NN\ ST
A0-8 ‘ 4 -_| }-—-‘—-
m |
] v \
T A=
r
L

T

4.6

NEC

WPD70320/22

Fig. 4-13 HOLD Accept and Release during HALT Mode

ANV aW WA RU W AW,

CLK

A0-19

Do-7

FMREQ

ANt

R/W

[OSTB

HLDRQ

ACDAR

A

HALT

HOLD

4.7

HALT

WPD70320/22

5 DMA Controller

There is a built-in two-channel DMA controller which can directly specify 1 megabyte memory space in the uPD70322/
70320.
5.1 Pin Functions

The DMA controller provides pins with the following functions. These pins can all be used in conjunction with the port;
therefore it is necessary to put the bit of the corresponding port 2 mode control register (PMC2) during use to 1.
(1) DMARQ 0, DMARQ 1 (P20, P23).

Active high DMA request input pin.
(2) DMAAK 0, DMAAK 1 (P21, P24).

An active low DMA response signal pin. However, there is no output during memory-to-memory DMA transfer (burst
mode, single step mode).
(3) TC 0, TC 1 (P22, P25).

An active low DMA completion signal output terminal. It is output when TCO or TC1 of the DMA service channel are 0.
5.2 DMA Operation

Thera are four types of DMA transmit mode in the uPD70322/70320. Functions of each transfer mode are indicated in
Table 5-1.

Table 5-1 Transfer Mode Functions

T] [
Mode TV?;!:éer | Function DMA start ! DMA Stop | Interrupts ‘ During HALT DMéhzgq;;es:a(zi%réng
SR E— ST L — SR —
single s(ep memory alternate(y repeats exe» | O DMA nsmg edge soﬂware i receive all carries out DMA channel 1 is
to cution of 1 instruction | O setting TDMA bit of specified either retained or
memory | and 1 DMA transfer for a ! DMA control register | number of interrupted and then
specified number of ! | 1 DMA transtfers | carries out channel
times on\y using 1 DMA i 0 DMA.
| reque ! |
- T T - e
burst memory | carries out successively ‘ O DMARY rising edge | NMI input only I can receive NMI | carries out New DMA'S are held
o a specified number of | O setting of TDMA bit | | only specified until DMA transfer is
memory | DMA transfers using of DMA control | | number of finished
1 DMA request register | DMA transfers
- s —— —_— - :
single memory | carries out one DMA | O DMARQ rising edge f software control | receive all same as usual ;?r"gée'se:e%eglﬂlesr current
transfer to /0~ transfer each time DM, | DMA transfer is
Vequesls are genera!ed completed
— — *1»* ———— — — - -
demand memory | carries out transfer O DMARQ high level O'stoppedatlow | O notaccepted | same as usual | New DMAS are held
release to1/O ~ during h\gh level period level of DMARQ during DMA | until DMA transfer is
| of DMARQ pin during DMA transfer | finished
transfer Cin all other |
O all others use soft-| ~cases, all |
ware control interrupts |
accepted |

5.1

N E C WPD70320/22

In memory-to-memory DMA transfer, DMAAK signal is not output. In memory-to-l/0O DMA transfer, DMAAK signal is out-
put for every 1 DMA cycle.

The programmable wait function (see 4.1) is effective even during DMA transfer. In memory-to-memory transfer the spe-
cified wait state is inserted at every transfer destination and transfer source. In memory-to-1/0 transfer a wait state which is
slow between memory and I/0 is inserted so as to complete one transfer in one bus cycle.

The bus hold function and refresh function are effective even during DMA transfer and DMA transfer is interrupted by
them.

All interrupts which were generated and could not be received during DMA transfer are reatained.

DMA transfer during HALT mode can be carried outif there are requests. When DMA transfer has ended, it returns to HALT
mode. If DMA transfer end interrupt occurs when it returns to HALT mode, the HALT mode is released.

Channel 0 is given priority when DMA requests are generated at the same time.

When DMA transfer is ended (when a specific number of DMA transfers is executed), it can generate an interrupt.
5.3 DMA Control Registers

The DMA mode register and DMA control register help to program the specification of DMA transfer mode. The DMA ser-
vice channels are mapped in internal RAM in order to specify transfer destination, transfer source and number of transfers.
There are also registers for interrupt control and they are provided for each channel.

5.3.1 DMA Mode Registers (DMAMO, DMAM1)

These are bit registers which designate DMA transfer mode. The DMAMn register (n=0,1) can be accessed with 8/1-bit

Read/Write operations by memory access.

Symbol 7 6 5 4 3 2 1 , address
(channel 0) bMAMO T «~FA1H
MD2 | MDL] MDo w |<:1m.\} rOMA | 0 0
(channel 1) DMAM1 ! . S FA3H

MD2) |NMD1 MDo| are bits which specify transfer mode

N‘,IZD NP "/(')D Transfer Mode
0 0 0 | single step mode
0 0 1 demand release moder(T/O——Memory) o
#T‘ 1 0 demand release mode (Memory--1/0)
0| 1| 1 | disable B o
1 0 0 burst mode
1 0 1 single transfer mode (I/0--Memory)
1] TVﬁO B single transfer mode (Memory——l/\(S)Hr *
77717 T/; L1 disable

W] A bit which specifies whether transfer processing is to be carried out by byte or by word.
A bit which specifies enable or disable for DMA transfer.

1indicates enable, O enable disable. This bit is automatically cleared (0) when the DMA service channel terminal
counter (TC) is 0.
Transfer Start Bit

This is effective only with single step mode or burst mode. DMA is started up when 1 is written into this bit. (However,
only when EDMA is set (1)). Read level for this bitis always 0. It is insjgnificant with demand release mode and single transfer
mode.

5.2

wPD70320/22 N E C

Fig. 5-1 Format for DMA Mode Registers (DOMAMO, DMAM1)

symbol 7 6 5) 3 2 1 0 add;ess "
XXFAl
DMAMO (channel 0) | l DI { MDO l w WEDMA LTDNI\' 0 ’ 01

DMAM?1 (channel 1) xXFA3H

EDMA{TDMA| Transfer Start
0 o | DMA disable condition
1 0 | Hold status
1 1 | DMA transfer start

EbMA| DMA transfer enable/disable
0 | DMA disable condition
1 | DMA enable condition

w | Transfer/processing method
o | byte transfer
1 | word transfer

MDZ [MD1 | MDo | Transfer mode
0 0 o | single step mode
0 0 1 |demand releasemode(memory-—llo)
0 1 0 |demandreleasemode (I/O--memory)
0 1 1
1 0 0 | burst mode
1 0 1 lsingle transfer mode (I/O--memory)
1 1 0 [single transter mode (memory--1/0)
1 1 1 | disable

5.3.2 DMA Control Registers (DOMACO, DMACH1)
These are 8-bitregisters which specify the influence on the source address and destination address in DMA transfer. The
DMAC register (n=0,1) can be accessed with 8/1-bit Read/Write operations using memory access.
DMACN register contents are retained during RESET and are undefined.
As fig. 5-2 indicates, bit 1,0 (PS1, PS0) of DMACn register specifies the influence on the source side address offset value.

Fig. 5-2 Format of DMA Control Register (DMACO0, DMAC1)

symbol 4 6 5 4 3 2 1 o address

DMACO (channel 0) XxFAOH
DMAC1 (channel 1)

OIOlPDllPDO‘OIVOIPSlIPSO xFALM
| |

PS1/PD1 | PS0/PDO | update mode for address offset value

0 1 increment of address offset value
1) decrement of address offset value
0 0

not used

1 1

5.3.3 DMA Service Channel

This is used to specify transfer source, transfer destination, and number of transfers used in DMA transfer and itis map-
ped in internal RAM. The internal RAM addresses are assigned as follows: channel 0 to XXEOOH-XXEQ7H and channel 1to
XXEO8H-XXEOFH (XX is the value designated by IDB register). Care must be taken with these areas as they are assigned to
the same areas as macro-service channel 0 and 1 as well as register bank 0.

5.3

N E C uPD70320/22

Designation of addresses for DMA source side and destination side is the same as the method for normal memory
access and is specified by offset from segment and segment. However, only the higher 8 bits of the segments can be speci-
fied-and the lower 8 bits are fixed to 0. Only this offset can be changed when changing the address using DMA transfer. As a
result, a 64K-byte transfer is possible as far as any number of transfers goes, and when DMA transfer of data exceeds 61441
bytes (61441 times during byte transfer, 30720 times during word transfer), and care must be taken as there are cases in
which it cannot be processed by a series of DMA transfers using addresses of transfer source and transfer destination.
However, it is wise to be cautious even in cases in which data do not exceed 61441 bytes when segment and offset value are
initialized. Fig. 5-3 shows configuration of DMA service channel; Fig. 5-4 shows method generation of DMA addresses.

Fig. 5-3 Format of DMA Service Channel

(offset value) 15 87 0
+0H SAR
+2H DAR
+4H SARH L DARH
+6H TC

® SAR (+0H): specifies offset (least significant 16-bit of address of DMA transfer source side.

® DAR (+2H): specifies offset (least significant 16-bit) of address of DMA transfer destination side.

® DARH (+4H): specifies most significant 8-bit of segment value of DMA transfer destination side.

® SARH (+5H): specifies most significant 8-bit of segment value of DMA transfer source side address. However, the least
significant 8-bit for the segment value is 0 fixed.

@® TC (+6H): specifies number of DMA transfers.

Fig. 5-4 Method of DMA Address Generation

O source side O destination side

segment (16) segment (16)
"""" e i e
........ Lesamcsd S R
12 bit 12 bit
T T T T - T
+) 0 L SAR (16 l + 0 [DAR (16]
1 L 1 1 1 1
T - T T T T T T
l target address I I target address J
1 1 1 1 1 1 1 1

DMA service channel 0 is assigned to XXEOOH and DMA service channel 1 is assigned to XXEO8H (XX is value designa-
ted by IDB register).

The DMA service channel is automatically changed by DMA operations. TC value is decremented by 1 for every DMA
transfer (byte data and word data are the same.).

Address offset value is changed in accordance with mode specified by DMA control register (DMACn): 1 or unchanged
for byte data, +2 or unchanged for word data.
5.3.4 DMA Interrupt Request Control Registers (DICQ, DIC1).

These are 8-bit registers for control of interrupts generated by completion of a DMA transfer. Interruptis generated when
terminal counter (TC)=0.

The DICn (n=0,1) registers can be accessed with 8/1-bit Read/Write operations using memory access. The DICn register
is initialized at 47H at reset time.

The macro-service functions are not supported in these interrupts. The DMA transfer completion interrupt of channel 0
(INTDO) and channel 1 (INTD1) form one group, the channel 0 taking a higher interrupt priority. INTDO control is carried out by
using the DICO register and the vector is 36. INTC1 control is carried out by DIC1 and the vector is 37 (see 2.4.5).

5.4

WPD70320/22 N E C

Fig. 5-5 Format of DMA Interrupt Request Registers (DICO, DIC1).

symbol 7 6 S ‘4 3 2 1 0 address
. DICO| DFo |DMKO| 0 |ENCS| o PR2 | PRI | PRO | XXFACH
(interrupt
priority
DFO>DF1)

DICILDF\ LDMK\[] LENCS’ 0 l 1 rl] 1 lxxFADH

(Note) The DIC1 register bit 2-0 is fixed at "1’ using hardware. Bit 2-0 is a bit field (PR2-0) which specifies
interrupt request priority by group and forms one group with the DICO register. The priority of the
DIC1 register interrupt requests conforms to the setting of the PR2-0 bit of the DICO register.

The DFO/DF1 bit is an interrupt request flag for DMA transfer completion and the DMKO/DMK1 are masked
bits for DMA transfer completion interrupt.
For description of other bit fields, see 3.7.

5.4 DMA Transfer Timing
Fig. 5-6 through 5-9 illustrate principal DMA transfer timing.

Fig. 5-6 Timing of burst mode (timing for 1 wait state insertion for transfer destination and no wait state insertion
for transfer source when starting DMA using DMARQ signal when TC=1).

| 4 | | | |
A0-A19 D ¢ ‘ L) |
‘ i | |

|

nNo-D7

i

.
=

e
1

g
-
=

DNAARD

|
ouwe [T TV |
e TUT]

R/W | \

| |
T |

\ ;

'
instruction 1 DMA transfer 1 DMA transfer (when TC=0) | instruction

5.5

N E C pPD70320/22

Fig. 5-7 Single Step Mode

oLk _{'\JF\J'—_Y‘_JWJL"\JF"\J'_\J—\JF
4 L

((<}
T ==
wea I\ T\
mste |\ _/

A0-A19

Do-D7

L
r[lp:
o<

R/W o \ t -
/) — —
ST ! | v
N
DI AARD , ? ; if —
1 instruction)
instruction 1 DMA transfer executed 1 DMA transfer instruction
Fig. 5-8 Single transfer mode Fig. 5-9 Demand Release mode
(memory--1/0, no wait) (I/0--memory 1/0; 1 wait, memory: no wait)
CLK—{ f r—_ CLK _ﬂ W f /
| | | | |
ao-at9 Y (A0-A19) | | I
D7 —) — D0-P7
D0-D7 —— —
SREQ -\ [MREQ —-—\ [\ {

[p— |

[0STB [0STB

C
H
TAAA

mmmxo% \1 W Y
DNAARD \—_/ DMARQO M \
R/W

] DNRARD —\ [/_

instruction |DMAtransfer|instruction instruction DMA transfer Dummy cyclel DMA transfer instruction

5.6

WPD70320/22 N E C

Fig. 5-10 Memory to Memory transfer mode

CLKOUT
DMA READ CYCLE DMA WRITE CYCLE
MSTB — R
R/W L

1 DMA TRANSFER CYCLE 12 CLOCKS
(MEMORY TO MEMORY TRANSFER, 0 WAIT)
DMA TRANSFER CYCLE
0 WAIT - 12 CLOCKS

1 WAIT -~ 12 CLOCKS
2 WAIT —~ 14 CLOCKS

5.7

WPD70320/22 N E C

6. Clock Generation Circuit

The Clock generation circuit supplies all types of clock to the CPU and to peripheral hardware and is a circuit which
controls the CPU’s operation mode. 6.1 Configuration of clock generation circuitry
Clock generation circuit is configured as in Fig. 6-1

Fig. 6-1 Block diagram of clock generation circuit

O 16-bit timer
O baud rate generator
frequenc S
waveform d‘? - Y O refresh circuit
adjustment lvider

time base counter (20)[— TBF

selector

X1
clock
=[N generation
] circuit

cG
~_ - CLK
PCKO
oK —D—O CLKOUT P07
TBO
a 2'%/fCLK, 2'*/fCLK,2'/fCLK, 22°/fCLK
TB1
2 8 interval specification for time base interrupt
g 0
[
€
= 0
RAMEN
0
Lf fx: oscillation frequency
fclk: system clock frequency
PRC: processor control register
TBF: time base interrupt request flag

CLKOUT: system clock output flag

The clock generation circuit uses a crystal oscillator connected to X1 and X2 pins or a ceramic oscillator. Clock genera-
tion circuit output undergoes a ,waveform adjustment” (1/2 ,frequency division”), selects ,frequency division” ratio and is
used as a system clock (CLK).

The CLK ,frequency division” ratio can select oscillation frequencies of 1/2, 1/4, and 1/8 by specifying bit 0, 1 (PCKO,
PCK1) of the processor control register (PRC).

Low-speed use of clock guarantees long periods of stable operation even if the voltage of a battery-driven system de-
creases.
6.2 Processor Control Register (PRC)

The PRC register is an 8-bit register which carries out concentrated control of CPU operations clock, time base interrupt
periods, internal RAM access and other items related to the CPU and internal system control.

The PRC register can be accessed with 8/1-bit Read/Write operations using memory access.

It is initialized at 4EH using RESET input.

The PCKO,1 bits determine the system clock ,frequency division” ratio. After ,frequency division” of the frequency of the
oscillator via PCKO,1, it is used as system clock (CLK).

The TBO,1 bits specify the time base interrupt interval. Four types of long interval time can be selected by using the
TBO,1 bit.

The RAMEN bit controls enable for internal RAM access. It makes no distinction of internal RAM address in disable condi-
tions (RAMEN bit,,0”) and accessing is always the object of external memory. When RAM is referenced as a register, internal
RAM is always the object of accessing.

6.1

E

uPD70320/22

Fig. 6-2 Format of Processor Control Register (PRC)

mbol 7 6 5 4 3 2 1 0 address
PRCI 0 { RAMEN} 0 l 0 [TB1 [TBO [PCK1 | PCKO| xXFEBH
| PCK1 | PCKO | ‘frequency division' ratio specification of system clock (CLK)
‘ 0 0 fCLK = oscillation frequency (fx) x
i 0 1 fCLK = oscillation frequency (fx) x %
1 0 fCLK = oscillation frequency (fx) x '/g
1 1 disabled
T8t TBO interval designation for time base interrupt
0 0 generation of interrupt each 2'9/fC|K interval
0 1 213/iCLK
1 0 2'6/fCLK
1 1 220/fcLK
RAMEN| specification of internal RAM enable
0 internal RAM disable
1 internal RAM enable

6.2

WPD70320/22 N E C

7 Time Base Counter

The uPD70322/70320 stores a long interval timer function for clock function.
7.1 Configuration of Time Base Counter

Configuration of time base counter is illustrated in Fig. 7-1.

The time base counteris configured of 20 , frequency dividers” which divide the frequency of the system clock (CLK). The
»frequency divider's lower side of the tap output s used for time count clock, baud rate generation input clock, refresh timing
generation and refresh address generation. Of the 20 tap outputs, output taps 9, 12, 15, and 19 are used for time base
interrupts. .

The time base counter is cleared 00H only by RESET input and afterwards it is always incremented continnously.

Fig. 7-1 Configuration of Time Base Counter

CLK

" time base counter (20-bit = 21--220)

foLk/2® foLk/2'-2° foLK/24-27 foLK®-2'®

16-bit timer baud rate generator refresh timing refresh address time base
interrupt request

fCLK/2'°,
2|3' 2!5’ 220

7.2 Specification of Time Base Interval
The interrupt request interval time which is generated from the time base counter can be selected from four types (as
indicated in Fig. 7-2) using bit 2,3 (TBO,1) of the processor control register (PRC).

Fig. 7-2 Interval Timer Mode of the Processor Control Register (PRC)

symbol 7 6 5 4 3 2 1 0 address
Pncro [H:\MENI 0 [0 I 81] TBo IPCKl [PCKO | x x FEBH
L_J fCLK= 5MHz (=% fx, fx = 10MHz)
TB1 | TBO interval time
0 0 2%/ feex (205018
0 1 2'%feLx (1.64ms)
1 0 2'%/fcx (13.1ms)
1 1 2%/ fcuk (210ms)

Note: time immediately after setting TBO, 1 bit until generation of initial interrupt request is undefined.

7.3 Time Base Interrupt Request Control Register (TBIC)
The TBIC is an 8-bit register used to carry out mask control for interrupt requests generated from the time base counter.
TBIC can be accessed with 8/1-bit Read/Write operations using memory access.
TBIC is initialized at 07H using RESET input.

71

N E C uPD70320/22

Fig. 7-3 Format of time base interrupt request control register (TBIC)

symbol 7 (] 5 4 3 2 1 0 address
TBIC[TBF[TBMK‘ 0 l 0 [0 l 1 I 1 [11 X X FECH

Interrupt requests are generated once the output tap of the time base counter specified by processor control register
(PRC) has gone to high level and the interrupt request flag (TBF) is set.

The TBIC bit 4.5 is fixed ,0” and there is no context-switching function or macro-service function using the timer base
counter interrupt. The TBIC bit 0-2 are fixed at 17, priority of time base interrupt (INTTB) is ,, 7” fixed, and is fixed at the lowest
position even among the other interrupts which have priority 7. Multiprocessing control, is accepted, however.

7.2

WPD70320/22 N E C

8. Serial Interface
8.1 Configuration of Serial Interface

The uPD70322/uPD70320 has two serial interface channels with built-in special baud rate generators. The serial int-
erface has two types of operational mode: an asynchronous (start/stop transmission) mode which takes data bit synchroni-
zation and charakter synchronization using start bitin the asynchronous mode and an I/O interface mode which carries out
data transmission by synchronizing in the serial clock which has been controlled in the same way as the uCOM-87 group
and other serial data transmission modes.

Fig. 8-1 gives a configuration diagram once for setting of serial interface asynchronous mode and once for I/O interface
set-up.

The serial interface part is comprised of serial data input (RxDn), serial data output (TxDn), serial clock output (SCKO)
transmission-enabling control input terminal (CTSn1), a transmission controller, an 8-bit serial register for send/receive, a
transmission buffer (TxBn), a receive buffer (RxBn) and a baud rate generator.

It has serial registers and serial buffers for each transmission and receiving so that the transmission and reception can
be carried out independently (all overlapping operations are possible). The CTSn terminal has functions for the receive
clock input/output terminal during I/0 interface mode so that all serial operations are possible and may overlap, evenin I/O
interface mode.

Fig. 8-1 Configuration of Serial Interface

(a) when asynchronous mode is set up (n-0, 1)

S internal bus g

STFn TxBn RxBn SREn

serial register

receive
control

TxDn serial register

transmission
control

CTSh SEFa

o— time base
se- [counter
A baud rate lec-foa—o0

?\[generator tor S tap output
| |
p———
PMCI e

RxDn O—D

*(channel 0)

SCKo* o

8.1

N E C pPD70320/22

(b) when I/0 interface mode is set up (channel 0 only)

S internal bus S

Iy g i

serial register serial register

transmission receive
control control

TxD0 O

N
CTS0 O—rtp RSCK RS(,‘KY,X
<
RSCK [<— time base
se- f[=—— counter
SCKo O 1 baud rate lec-t=—
) ?\r generator tor [=—— tap output
D—
TxE —
RxD0 O- <}

8.2 Asynchronous Mode
During asynchronous mode, the specification of character length, number of stop bits, parity enable, odd/even parity is
made by the serial mode register (SCMn).

(1) Transmission

In transmission operations bit 7 (TxRDY) of serial mode register (SCMn) is set (1) and the CTSn terminal goes to transmit
enable condition at active time (0).

There are three methods of transmission start:

(i) transmission buffer (TxB) is set up in transmission condition when empty which generates transmission completion
interrupt requests and carries out transmission data write operations to the transmission buffer within interrupt processing.

(i) when transmission data are transmitted to transmission buffer at transmission enable condition, this transmission
data are continuosly sent after the preceding transmission operation has ended.

(iii) in transmission disable condition, transmission data are writen beforehand in transmission buffer and the data reati-
ned in the transmission buffer are sent afterwards when it is put in transmission enable condition.

*-there are no restrictions as such in the procedure for setting up the transmission enable condition; itis possible to make
TxRDY=,1" active and set it at xRDY=,1".

In the transmission data format, one data frame is comprised of start bit, character bit, parity bitand stop bit as the follow-
ing figure indicates; the data transmitted is sentfrom the TxDn terminal starting with least significant bit (LSB). The TxDn termi-
nal is in mark condition (1) during transmit disable or when it has no data which it is transmitting to serial register.

[one dataframe —
AL
L
start | po parit i
sta D1 D6 o7 \Pe Y{ stop bit
4
start bit =~ ... 1 bit
chara%ter bit 7/8 bit
parity bit . odd/even/0/
stop bit ... 1/2 bit Unatiached

8.2

WPD70320/22 N E C

When the transmission buffer becomes empty the interrupt request for transmission completion is immediately genera-
ted and the transmission buffer goes to empty condition due to RESET input. When it is setto transmission enable condition
at this time, the interrupt requests for transmission completion are generated. When transmit data from the transmit buffer
are sent to the shift register by starting transmission operations, the transmission buffer goes to empty condition and there
interrupt requests for transmission completion are generated.

Each time an interrupt request for transmission completion is generated continuous data transmission is possible by
writing the transmission data in the transmission buffer without the mark condition (1) becoming inserted.

While transmission operations are being carried out the data being transmitted are sent one frame at a time until the end
of the data or when switched to transmit disable condition. However, when new transmission data have already been written
into the transmission buffer, sending from transmission buffer to shift register is disabled and transmission buffer contents
are retained as they are. When it is again set to transmit enable condition, the transmission buffer contents coinciding with
this timing are sent to shift register and interrupt request for transmission completion are generated at the same time that
transmission has started.

(2) Receiving

In receiving operations, it goes to receive enable condition when bit 6 (RxE) of serial mode register (SCMn) is set (1). (In
receive disable condition (RxE=0) the hardware for receive is in a standby condition). '

Samplingis carried out on the RxDn terminal input using the input clock to the baud rate generator; when the trailing edge
is detected, receive operations are started up and a receive baud rate generator is started. When a RxDn pin input low level is
detected using the initial timing signal from the receive baud rate generator, receiving operations are carried out after they
have been recognized as a start bit. When high level has been detected by the initial timing signal, the baud rate generator is
initialized without having recognized a start bit and operations are suspended.

Sampling of receiving data is carried out through synchronization with rise of a shift clock after the start bit has been
detected, as indicated in the following figure.

Sampling timing of receive data

- JUUULTUUUL

RxDn gti?“ Do D1 D§ D7

W

parity| stop
bit bit(s)

The receive interrupt requests are generated when the receive data from the shift register are sent to receive buffer
(RxBn) when reception of data whose character length has been specified by serial mode register bit 3 (CL) has ended.
During reception, receive error flag is set and receive error interrupt requests are generated, a parity check of even and odd
numbers is carried out (when parity 1 bit=1*), and if they do not match (parity error), or when stop bit is low level (framing
error), or when receive buffer is full and the subsequent data are sent to receive buffer (overrun error). (See 8.6).

Note: The PRTY1 bit is Bit 5 of the serial mode register.

8.3 I/0 Interface Mode

I/Q interface mode is identical to the uCOM-87 serial interface and is effective either when expanding I/0 to external parts
or when connecting peripheral controllers (A/D converter, LCD controller).

When using I/Q interface mode, data transmission is carried out starting with the most significant bit (MSB) with 8-bit fixed

character length and without parity bit. I/O interface mode is used on channel 0.

(1) Transmission
Transmission operations go to transmit enable condition when bit 7 (TXE) of serial mode register is set.

The SCKO terminal becomes transmission clock output pinin 1/O interface mode. As with asynchronous mode, there are
three types of transmission operation start-ups as follows:

(i) when transmission buffer (TxBO) is in empty condition, an interrupt request for transmission completion is generated by
setting the buffer in transmit enable condition, and transmission data write operations to transmission buffer are carried
out.

(ii) when transmission data are sent to transmission buffer (TxBO) in transmit enable condition, when the preceding trans-
mission operation is completed, this transmission is continuously sent.

(iii) intransmitdisable condition, transmission data are written in transmission buffer beforehand and when buffer is later put
in transmit enable condition, the data retained in transmission buffer (TxBO) are sent.

8.3

N E C pPD70320/22

TxDO D7 D6 DS D4 D3 D2 Dt Do

- Uguduuuuy o

Interrupt requests for transmission completion are generated as soon as transmission butfer (TxBO) is empty. Transmis-
sion buffer (TxBO) goes to empty condition due to RESET input. At this time, when itis set at transmit enable condition, inter-
rupt requests for transmission completion are generated. When transmission data from transmission buffer (TxBO) are sent
by starting transmission operations, the transmission buffer goes to empty condition and an interrupt request for transmis-
sion is generated.

(2) Receive

In receive operations, when bit 6 (RxE) in the serial mode register is set (1), it goes to receive enable condition. Receive
data are input to serial register on receive clock rising edge. When the serial register receives 8-bit data, data are sent from
the serial register to the receive buffer (RxBO) and an interrupt request for receive completion is generated.

Receive clocks in I/O interface mode are selected from both the external receive clocks and from the internal receive
clocks by specifying bit 2 (RSCK) of the serial mode register (SCMO0).

The CTSO terminal also functions as an input/output pin during I/O interface mode. Receive error flagis setand the inter-
rupt request for receive error are generated at receive time when the receive buffer is full (RxBO) and when the following data
have been sent to the receive buffer.

8.4 Serial Mode Register (SCM0, SCM1)

The SCMnregister (n=0, 1) is an 8-bit register which specifies the transmission mode for the serial interface and is setup
at both channel 0 (SCM0) and channel 1 (SCM1). The assigned meanings of bits 7 to 2 on the SCMn vary according to speci-
fication of bits 1, 0 (MD1, MDO)

symbol 7 6 5 4 3 2 1 0 address
(channel 0) scmo XX F68H
MD | MD
1 0
(channel 1) scant xx F78H
MD1, MD0=0,1 (asynchronous mode)
7 6 5 4 3 2 1 0
SCMO
xRov| Ree | FRIVIPRIY | mp | si | o 1
SCM1
MD1, MD0=0, 0 (I/0 interface mode)
7 6 5 4 3 2 1 0
SCMO| TxE RxE 0 0 TSK | RSCK 0 [

MD1 and MDO bits are bit fields which specify transmission mode of serial interface. When they are setatMD1,MD0 =0, 1,
they go to asynchronous mode; when setatMD1, MDO =0, 0, they go to I/0 interface mode. However, I/O interface mode can
be set up only in SCMO.

SCMn can be accessed by 8/1-bit Read/Write operations by using memory access.

These registers are cleared to 00H by RESET input.

(1) Setting up of asynchronous mode
[RxEJa bit which carries out receive enable control.

When placed in receive disable condition (RXE =0) during receive operations, receive processing is interrupted and no
interrupt requests for receive completion are generated.
[BLa bit which specifies stop bit

When SL bit is reset (0), the stop bit is 1 bit and it is 2 bits when set (1).
[CLla bit which specifies character length.s

When CL bis is reset (0) it is 7 characters long and 8 characters long when set (1).
[PRTYQ) [PRTY1]bits which specify parity assignment.

PRTYO, 1 bits specify no parity, odd and even number parity, and 0 parity. 0 parity makes parity bit"0” during transmission
and ignores it during receive.

[TXRDVYlis a bit which controls transmission enable condition.
When CTSn pin is low level and when TxRDY =1, it causes the transmit enable condition.

8.4

wPD70320/22 N E C

Fig. 8-2 Format for Serial Mode Register (SCMO0, SCM1) ... when setting up
Asynchronous Mode

S|
ymbol 7 s 5 ' 3 2 N 0 address
SCNO X x F68H
TxRDY| RxE |PRTY1|PRTY0| CL SL 0 1
scan XX F78H .
‘__J specification of stop bit length
0 1 stop bit

1 2 stop bits

character length specification

0 7 bits
1 8 bits
parity assignment specification
P“lTY PROT" parity specification

0 0 no parity

0 1 0 parity*

1 0 odd parity

1 1 even parity

*0 parity means that parity bitis O at .
transmission time and ignored at receive time

receive enable control

0 receive disable condition

1 receive enable condition

transmission enable condition

0 |transmission disable condition

1 |WhenCTSnterminal is low level,
transmission enable condition

(2) Setting up of I/O Interface Mode
[RSCKla bit which specifies source of serial receive clocks

When RSCK bit is reset (0), receive operations are carried out by external receive clock; when RSCK bitis set (1), receive
operations are carried out by internal receive clock. Input/output for receive clock is carried out by CTSO pin.
[TSKlan output trigger bit for receive clock.

This is effective only when RSCK bitis set (1) and eight receive shift clocks are output from CTSO terminal by write opera-
tion of 1 to TSK bit.

a bit which carries out receive enable control.

When RxE bitis set (1), it goes to receive enable condition; when reset (0), it goes to receive disable condition. When putin
receive disable condition during receive operations, receive processing is interrupted at that point, and no interrupt requests
for receive completion are generated.

[xEla bit which carries out transmission enable control.

When TxE bit is set (1), it goes to transmission enable condition; when is is reset (0), it goes to transmission disable

condition.

8.5

N EC uPD70320/22

When transmission data are written into transmission buffer during transmission enable condition (TXE=1), corre-
sponding serial transmission is started after completion of running transmisson, and started immediately if no transmission
is being carried out. When transmission data are written into transmission buffer during transmission disable condition
(TXE =0), serial transmission is not carried out, and data in the transmission buffer is retained unchanged. Afterwards, trans-
mission processing of transmission data retained in the buffer is started at the same time when switching to transmission
enable condition takes place.

Even if the TxE bit is reset (0) (transmission disable condition) during transmission operations, transmission operations
are carried out until completion. However, the next transmission data which have already been stored in the transmission
buffer at the point when it has been set to disable condition, the transmission following this transmission is omitted and the
data are remaining in the buffer.

Fig. 8-3 Format for Serial Mode Register (SCMO) I/0 Interface Mode

symbol 7 6 5 4 3 2 1 0 address

SCMO| TxE RxE 0 0 TSK | RSCK 0 0 XX F68H

receive clock specification

receive (CTSO terminal input
mode) with external clock

receive(CTSO terminal output
mode) with internal clock

serial interface control

l

writing '1’ triggers
8 shift clock pulses

receive enable control

0 receive disable condition

1 receive enable condition

transmission enable condition

o |[transmissiondisable condition

1 |transmission enable condition

8.5 Baud Rate Generator

The baud rate generator is an 8-bit timer for the serial interface which generates shift clocks for transmission and receive.
Each channel is provided with an own baud rate generator for transmission and receiving. The baud rate is the same both
transmission and receiving and the baud rate is determined by writing the value to the baud rate generator register (BRGn).

The specification of the input clock for the baud rate generator is done by selecting the time base counter (see 7.1) output
tap using the PRS3-0 bits of the serial control register (SCCn). The serial interface shift clock uses the baud rate generator
output signals which have been divided by two. Setting up the baud rate generator for the transmit rate the parameter values
satisfy the following formula:

CLK
BxG =106 X ont

8.6

wPD70320/22) N E C

Where the parameters are defined as follows:

B: transmission baud rate (bps)

B=10,..... 9600, 19200.. . .

G: set value for baud rate register (BRGn)
(1--G--255)

n: Input clock specification number (0--n--7)

for baud rate generator specified by serial control register (SCC).
CLK: system clock frequency (MHz)

Based on the above formula, the set values for the baud rate generator for all standard transmission baud rates when
using a 10MHz crystal attached to the outside are as follows.

Chart 8-1 Set values for Baud Rate Generator (for reference)

fCLK = 5MHz (=% fx; fx = 10 MHz)

baue rate n Thdhregnter | o0
110 7 178 0.25
150 7 130 0.16
300 6 130 0.16
600 S 130 0.16
1200 4 130 0.16

2400 3 130 0.16

4800 2 130 0.16

9600 1 130 0.16
19200 0 130 0.16
38400 0 65 0.16
1.25M 0 2 0

n: input clock specification number of baud rate
generator

8.5.1 Serial Control Registers (SCC0, SCC1)
The SCCn register (n=0, 1) is a register which controls serial interface transmission rate.
SCCn can be accessed by 8/1-bit Read/Write operations using memory access.
It is initialized at O0H using RESET input.

It specifies the output tap of the time base counter which is input to the baud rate generator in the PRS3-0 bit field.

8.7

N E C pPD70320/22

Fig. 8-4 Format for Serial Control Registers (SCCO0, SCC1)

symbol 7 6 5 4 3 2 1 address
XX F69H
SCCO (channel 0) 0 0 0 0 PRS | PRS | PRS | PRS
SCC1 (channel 1) 3 2 1 0
] XxF79H
PRS | PRS | PRS | PRS |input clock to baud
3 2 1 0 rate generator
0 0 0 0 feux
0 0 0 1 feur/2
0 0 1 0 feux/4
0 0 1 1 feLk/8
0 1 0 0 fcLx/16
o 1 0 1 feux/32
0 1 1 0 four/64
0 1 1 1 fcux/128
1 0 0] fcux/256

fCLK: system clock frequency

8.6 Serial Error Processing
The following three types of serial interface errors during reception can be detected.
(i) Parity error (asynchronous mode)
Transmit parity and receive parity are different.
(iiy Framing error (asynchronous mode)
Stop bit is.not detected.
(iii) Overrun error (asynchronous mode, I/O interface mode).
Before taking over the previous receive data from RxB, the following reception is completed.
8.6.1 Serial Error Registers (SCEO, SCE1)
These are 8-bit registers which indicate three types of error flag conditions corresponding to each receive error. Both
channel 0 and channel 1 are provided with them.
SCEn (n=0, 1) can be accessed only by 8-bit Read operations using memory access.
SCEn is initialized with 00H during RESET.
[ERPnlParity error flag

ERP flag is set when transmit parity and receive parity do not agree and is reset (1) during receive data read from receive
buffer.
[ERFnl Framing error flag

ERF flag is set (1) when stop bit is not detected and reset (0) during receive data read from receive buffer.
[EROnlOverrun error flag

ERO flag is set (1) when before receiving the preceding receive data from RxB the next receive is completed, and reset (0)
during receive data read from receive buffer.
[BxDnlis a bit which checks receiver terminal input condition using RxB bit.

The serial error register (SCEn) is initialized at 00H using RESET input.

8.8

uPD70320/22 N E C

Fig. 8-5 Format of Serial Error Registers (SCEO, SCE1)

symbol 7 6 5 4 3 2 1 0 address

X X F6BH
SCEO(channel 0)
SCE1 (channel 1)

RxDn 0 0 0 0 ERPn | ERFn | EROn

¥ X F7BH
overrun error flag

reset (0)'during receive data read
from receive buffer
Set (1) when the nextreceive datais ~
transferred to the receive buffer (RxB)
before the previous data has been read out
framing error flag

reset (0) at time of receive data
read from receive buffer

set (1) when stop bit is not detected

parity error flag

reset (0) at time of receive data
read from receive buffer

set when transmission pariy and
receive parity do not correspond

receive pin condition

checks receiver terminal input
condition with RxB bit

8.7 Break Detection Function
The uPD70322/70320 can be used to detect circuit break condition using software processing (asynchronous-mode
only). Procedures for detecting a break condition are as follows:
(1) generation of receive error interrupt using the first framing error.
Receive data are checked inside receive error processing routine and are confirmed to be 00H.
At the same time, receive error flag is checked and the framing error is confirmed.
(2) generation of receive error interrupt using second framing error.

Framing error is again generated during break condition.

Receive data is again 00H, and continuous reception of 00H data which accompany framing error as well as confirmation
of direct pin condition using bit 7 (RxDn) of serial error register (SCEn) are used to decide that the circuitis in break condition.
8.8 Interrupt Requests for Serial Interface

There are three types of interrupt requests which are generated by the serial interface and which correspond to the two
channels: interrupt requests for transmission completion, for receive completion, and for receive error.

8.8.1 Control Registers for Interrupt Requests (SEICn, SRICn, STICn) n=0, 1

These are registers which control three types of interrupt requests generated from the serial interface: interrupt requests
for receive error (SERn), for receive completion (SRFn), and for transmission completion (STFn). The three control registers
for interrupt requests form one group and can be applied a priority specified for the serial interface interrupt request. The
priorities inside the group are decided using hardware in the following way:

SEFn > SRFn > STFn
when SEF = 1, SRF is always set.

8.9

N E C uPD70320/22

Fig. 8-6 Interrupt Control Registers (SEICn, SRICn, STICn) (n=0,1)

symbol 5 6 5 ‘ 3 2 1 ° address

SEICO XXF6CH
SEFn | SEMKn |MS/INT| ENCS | 0 PR2 | PR1 | PRO

SEIC1 XXF7CH

SRICO XXF6DH
SRFn | SRMKn |MS/INT| ENCS| © 1 1 1

SRIC1 XXF7DH

STICO XXF6EH
STFn | STMKn [MS/INT| ENCS 0 1 1 1

STICL XxXF7TEH

(Note) The SRICn and STICn bits 2-0 are fixed at '1" using hardware. Bit 2-0 is a bit field (PR2-0) which
specifies priority of interrupt requests according to group and form a group within SEICn.
Interrupt request priority for SRICn and STICn conform to set-up of PRs-0 of SEICn.

Bits SEFn, SRFn, and STFn are interrupt request flags and are all set (1) respectively according to generation of receive
error, receive completion, and transmission completion, and are reset, by acceptance of interrupt requests or by software.

See 3.7 for description of other bit fields.

SEICn, SRICn, and STICn can be accessed by 8/1-bit Read/write operations using memory access. SEICn, SRICn, and
STICn are initialized at 47H using RESET input.
8.8.2 Macro-Service Control Registers (SRMSn, STMSn) n=0;1

SRMSn is an 8-bit register which specifies macro-service processing mode which accompanies receive completion of
serial interface. STMSn is an 8-bit register which specifies the macro-service processing mode and the channel which
accompany the transmission completion of the serial interface. SRMSn and STMSn correspond to the two serial interface
channels.

SRMSn and STMSh can be accessed by 8/1-bit Read/Write operations using memory access.

See 3.4.3 for description of each macro-service regsiter bit.

Fig. 8-7 Format of Macro-Service Control Register (SRMSn, STMSn) n=0,1

symbol 6 5 4 3 2 1 o address

SRMS0 X% F65H
msaiz | msmi|msyo| piR | o | cnz | cm | cHo

SRMS1 xxF75H

STMSO xXF66H

MSM2 | MSM1 | MSMO| DIR 0 CH2 CH1 CHo

STMS1 XXF76H

8.10

WPD70320/22 N E C

9. Timer Unit

The uPD70322/70320 timer unit can be used as an interval timer, a one shot timer, and as a square wave output.
9.1 Configuration and Operation of Timer Unit
The timer unitis comprised of two 16-bittimer registers, two 16-bit modulo/timer registers and an 8-bittimer control regis-
ter. Configuration and operation of each operational mode are described as follows.
(1) Interval timer mode
When timer unit is set up in interval timer mode, both timers 0 and 1 can be used as in Fig. 9-1.

Fig. 9-1 Configuration of Timer Unit during Interval Timer Mode

timer 0 MDO(16)

-I

CLK/6 = OuTPUT

I
control Tour

TMO(16)

CLK/128 —————uy

= TMFO is set

timer 1

preset

CLK/6

TM1(16) p——= TMF1 is set

|

CLK/128

TMF2 is set
(interrupt request)

Interval timer mode is specified by timer control register (TMCO) and when TSO bit is set (1), the MDO register value is
loaded into the TMO register, and the clock specified by TCLKO is down counted. When an underflow is generated during
down count, the MDO register value is again reloaded into the TMO register and the down count is again repeated.

The same down count operations are executed for register of timer 1.

(2) One shot timer mode

When timer unitis set up in one shot timer mode, channel 0 is used as indicated in Fig. 9-2. However, it is still possible to

operate timer 1 (channel 1) simultaneously as an interval timer.

Fig. 9-2 Configuration of Timer Unit during One Shot Timer Mode

cLkinz ——— e | timer0
CLK/128 or
OUTPUT TOUT
- control
IS 747 J—
CLK/128 ———=f tor

timer 1

MD1(16)

preset

TMI1(16)

The one shottimer mode is specified by the timer control register (TMCO) and when TSO/MSO bitis set (1), the TMO/MDO
register down counts clocks specified by TCLKO/MCLKO bit. When an underflow is generated during counting, the count
operations are suspended. TMO/MDO register is suspended while retaining 000H.

CLK/6 —

TMF2 is set (interrupt request)

CLK/128 ——

9.1

NEC

9.2 Timer Control Registers (TMC0, TMC1)

The TMCO register is an 8-bit register which controls operations of TMO and MDO registers. The TMC1 register is an 8-bit
register which controls operations of TM1 and MD1 registers.

TMCO and TMC1 registers can be accessed by 8/1-bit Read/Write operations using memory access. They are initialized
at OOH using RESET input. TMCO and IMC1 registers have different formats as shown in the following figures.

wPD70320/22

(interval imer mode, one shot timer mode)

symbol 7 J 5 ‘ 3 2 ! 0 address
TMco| TSo |TcLko| MSO |MCLKO| ENTO| ALV | MODL | MODO| XX F 9 0H:
(interval timer mode)
7 6 5 4 3 2 1 0
TMC1| TS1 |[TCLK1| 0O 0 0 0 0 0 XxXF91H

Operational mode for timer 0 and timer 1 which are comprised respectively of TMO and MDO, and TM1and MD1 are speci-
fied by bits 0, 1 (MODO, 1) of TMCO and TMC1 registers.
and are bits which specify the operational modes for timer 0 and timer 1.

When MODO =0 and MOD1 =0, the interval timer operation mode is set. When MODO =1and MOD1 =0, the one-shottim-
er mode is set.

During the interval timer operation mode, TMO and TM1work astimer registers which down-countthe setvalues, where as

MDO and MD1 work as modulo registers which retain the set values for the intervals. Under the one-shot timer operation

mode both TMO and MDO work as timer registers down counting the set values. The timer 1, however has ists TMC1 bits 0
and 1 fixed as "0”, capable of operating only as an interval timer.

As aresult, timer 0 can operate as a 16-bitinterval timer or as two 16-bit one shottimers comprised of TMO and MDO using
TMCO register. Timer 1 can be operated as a 16-bit interval timer comprised of TM1 and MD1 using TMC1 register.

Timer 0 can also output rectangular waves to the TOUT pin using the TMCO register. However, TOUT pin used with P15 to
output rectangular waves to TOUT pin so that bit 5 (PMC15) of port 1 mode control register must be put on control mode.
is a bit which specifies the active level for TOUT pin output.

The active level of TOUT pin output when ENTO bit is reset (0) goes to low level when ALV bit is reset (0) and high active
when set (1).

ENTO/ is a bit which specifies operations for square waves output to TOUT pin.

When ENTO bit is reset (0), the TOUT pin level is specified by ALV bit. When ENTO bit is set (1), the TOUT pin level is
reserved every time the interrupt request flag of the timer unit is set.

Descriptions of other bits of TMCO and TMC1 registers are given according to operational mode as follows.
is a bit which specifies TMn register count clock.

Chart 9-1 gives reference values for system clocks with 5SMHz frequency.

is a bit which controls the operations of timer n.

When TSn bitis set (1), the value of the MDn register is setinto the TMn regsiter and the down count of TMn register is start-
ed. When the TSn bit s cleared (0) the TMn register down countis suspended with TMn and MDn register contents retained

unchanged.
During down count, underflow is generated and when TSn bitis set (1) again, the value of MDn register is again reloaded

into the TMn register and down count operations are restarted.

Chart 8-1 Count Time (n=0,1) for Timer Register (TMn) During Interval

Timer Mode fCLK = 5 MHz (=) fx; fx = 10MHz)
TCLKn | count clock resolution full count
0 feLx/6 1.2 ps 786 ms

1 fork/128 B 25.;us 1.7 s]

9.2

WPD70320/22 N E C

(2) One Shot Timer MOde (MODO=1, MOD1=0) However, timer 0 only.
is a bit which specifies TMO register count clock.

Table 9-2 indicates reference values when system clock frequency (TCLK) is 5SMHz.
is a bit which controls TMO register operations.

When TSO bit is set, it is down counted from values of TMO register which have been retained at that time; TSO bit is
cleared (0) by underflow generation, and count operations are suspended. When TSO is cleared (0), count is suspended
while retaining TMO register value unchanged.

Qlis a bit which specifies MDO register count clocks.

Table 9-2 indicates reference values when system clock frequency (CLK) is SMHz. When it is specified in interval timer
mode, the MCLKO does not affect the count operation.
[MSO]is a bit which controls count operations for MD register.

When MSO bitis set (0), itis down counted from the MDO register values which are retained at that time; MSO bitis cleared
(0) by underflow generation and count operations are suspended. When MSO bit is cleared (0), count is suspended while
MDO register values are retained unchanged.

The MSO bit does not affect count operations during interval timer operations.

Chart 9-2 Count Time for Timer Register 0 (TMO0) and Modulo Timer
Register 0 (MDO) During One Shot Timer Mode fCLK = SMHz(=!2 fx ; fx = 10 MHz)

TCLKO | ok i
MCLKO | count cloc resolution full count
| S B I
0 | fex12 157.3 ms
| |
1 [fox 128 | 25.6 s 1.7 s

iNote: the TMO register has different count ciocks depending on whether it has been specified in intervai timer mode or speci-
fied in one shot time mode.

9.3

ol

co

NEC

pPD70320/22

Fig. 9-3 Format of Timer Control Register 0 (TMCO)

7 6 5 4 3 2 1 0

TS |TCLK| MS |MCLK M address
L MOD [s]0]

0 0 "0 0 ENTO| ALV 1 0 XxF90H

L]

operational mode specifications
IMODMOD|
110

specification

0 | O | interval timer mode

0 1 | one shot timer mode

1 x | disable

*'0’ must be written in MOD1

effective level specification for TOUT pin
0 TOUT pin active level is specified at
low level

1 TOUT pin active level is specified at
high level

operation specification for TOUT pin
0 | TOUT pin level fixed at ALV bit

1 TOUT pin level reversed by TMFO set
timing

clock source specified for MDO register (during one shot timer mode)
0 CLK/12 specified as MDO register count
clock

1 CLK/128 specified as MDO register count
clock

operation control for MDO register (during one shot timer mode)

0 | count stopped (MDO retained)

1 | MDO down count started

clock source specification for TMO register

during 0 | fCLK/6 specified as TMO count clock
inter-
f |

mer |1 fCLK/128 specified as MDO countclock

auing| O | fCLK/12 specified as TMO count clock
one
shot

mede | { | fCLK/128 specified as TMO count clock

operation control for TMO register

dunar 0 | count stopped (TMO, MDO retained)
val

timer | 4 MDO contents loaded to TMO;
mode TMO down count started

dus) 0 | count stopped (TMO retained)
shot
timer

moge | 1 | TMO down count started

9.4

WPD70320/22 N E C

Fig. 9-4 Format of Timer Control Register 1 (TMC1)

7 6 5 4 3 2 1 0
Symbol Address

TS | TCLK
1

TMC1 0 0 0 0 0 0 XXF91H

Clock source specification for TM1 register

o | specifies f{CLK/6 as count clock

1 | specifies fCLK/128 as count clock

Operation control for TM1 register

0 count stop (maintains TM1, MD1)

Starts TM1 down count by loading the
contents of MD1on TM1

9.3 Timer Unit Interrupt Requests
Three interrupt requests (TMF0-2) are generated from the timer unit. The generation condition for the interrupt requests

coming from the timer unit differ according to the specification of the timer operation mode.
When they are set up to interval timer mode, the TMFQ is set (1) by the timing of underflow generated by the TMO register
countdown, and TMF1 and TMF2 are set (1) by underflow generated by TM1 register countdown (Fig. 9-5a).

When TMO and MDO registers are set up in one shot timer mode, TMFO is set (1) by underflow generated by TMO register
countdown and TMF1 is set (1) by underflow generated by MDO register countdown. In this case, TMF2 is set (1) by the
underflow generated by TM1 regsiter countdown which operates as an interval timer.

Fig. 9-5 Interrupt Requests from Timer Unit

a. when TMO and MDO are specified as Interval Timer Mode

MDO
""""""""""""""""""""""""" TMFOQ set signal
T™O
MD1
""""""""""""" TMF1 set signal
™1
TMF2 set signal

b. when TMO and MDO are specified as One Shot Timer Mode

MDO TMF1 set signal
™0 TMFO set signal
MD1

R R CRnCET T D RE R E RO PR P DD PR PP TMF2 set signal
T™M1

TMFO-2 timer unit interrupt request flag 0-2

9.5

N E C WPD70320/22

9.3.1 Interrupt Request Control Registers for Timer Unit (TMICO, TMIC1, TMIC2)

The TMICn (n=0-2) register is an 8-bit register which controls three interrupt requests which are generated from the timer
unit. These three interrupts requests form one group and priority for the timer unit interrupt requests as specified by pro-
gram. Within that group, priority is fixed using hardware as follows.

TMFO > TMF1 > TMF2

Fig. 9-6 Format of Interrupt Request Control Registers for Timer Units
(TMICO, TMIC1, TMIC2)

Symbol 7 6 5 4 3 2 1 0 Address

TMICO | TMFO | TMMKO|MS/INT| ENCS 0 PR2 | PR1 | PRO | XxXF9CH

TMIC1 | TMF1 | TMMK1 [MS/INT| ENCS 0 1 1 1 XXF9DH

TMIC2 | TMF2 | TMMK2[MS/INT| ENCS] 1 1 1 XxxF9EH

(Note) Bit 2-0 for TMIC1 and TMIC2 are fixed at 1" by hardware. Bit2-O is a bit field (PR2-0) which specifies the priority of
interrupt requests in the group and it forms one group with TMICO. Priority for TMCI1 and TMIC2 interrupt requests conforms

with setting of PR2-0 for TMICO.
See 3.7 for explanation of each of the TMICn register bits.
The TMICn regsiter can be accessed by 8/1 bit Read/Write operations using memory access.
The TMICn regsiter is initialized at 07H by RESET input.

9.3.2 Macro-Service Control Registers for Timer Unit (TMMSO, TMMS1, TMMS2)

These are 8-bit registers which control macro-service started by the three types of interrupt requests generated from the

timer unit.

The TMMSO register controls macro-service started by the TMFO flag. The TMMS1 and TMMS2 both control macro-ser-

vice which is started by TMF1 flag (for TMMS1) and TMF2 flag (for TMMS2).
TMMSn (n=0-2) can be accessed by 8/1-bit Read/Write operations using memory access.

Fig. 9-7 Format of Macro-Service Control Registers for Timer Unit
(TMMSO0, TMMS1, TMMS2).

Symbol 4 6 5 . .3 2 1 0 Address

TMMSO XXF94H
MSM | MSM | MSM CH CH CH

TMMS1 2 1 ° DIR 0 2 1 0 XXF95H

TMMS2 XXF96H

See 3.4 for explanation of TMMSn regiter bits.

9.6

uPD70320/22 N E C

10 PORT FUNCTIONS
10.1 Port 0-2
10.1.1 Hardware Configuration

The uPD70322/uPD70320 ports 0-2 are basically comprised of three state bidirectional ports as indicated in Fig. 10-1.
Each port mode register bit is set (1) by RESET input and thus specified as input port. All port pins are placed in a high
impedance condition. The output latch contents are not influenced by RESET input.

Fig. 10-1 Configuration of Port 0-2

(A
WRpy
}\ PMXn
< latch
WRporr
output f
4 i latch O PXpin
inter-
nal output buffer
bus RDour
!
7 \J
RDoyr
Note: PMXn latch: bit n of port mode register PMX
r_)

(1) When specified as output port (PMXn=0)

The output latch is effective and data exchange between output latch and accumulator can be carried out by transfer
instructions. Output latch contents can be set without restriction by logical operation instructions. Once data are written into
the output latch, they are retained until the next instruction to operate the port is executed.

Fig. 10-2 Port for Output Port Specification

(N
WReyory
i output .
A= latch PXn
inter-
nal RDour
bus
S <l
A

10.1

N E C WPD70320/22

(2) when specified as input port (PMXn=1)

Port pin level can be loaded to the accumulator using transfer instructions. Even inthis case writing into the output latch is
possible and data sent from accumulator using transfer instructions are latched completely by the output latch regardiess of
portinput/output specification. However, the bit output buffer specified atinput port goes to highimpedance condition so that
there is no output to the port pin. (When the bit for input/output specification has been switched to the output port the con-
tents of the output latch are not output to the port terminal). The contents of the output latch of the bit specified as input port
can not be loaded to the accumulator. (Fig. 10-3)

Fig. 10-3 Port for Input Port Specification

-
WRpokr
output
> latch —————0O PXn
inter-
nal
bus
RDw
N

(3) with control specification (PMCXn=1)

In working with port 0-2, the bit of port mode control register (PMCX) is set (1) so that it can be used as input or output for
control signals in units of bits regardless of the port mode register (PMX) set up. When a pin is used for a control signal the
condition of the control signal can be checked by executing the port access instructions.

Fig. 10-4 Port for Control Signal Specification

control (input) __—1
[\ O PXn
l/

control (output)

PMXn=0
RD A\
PMXn=1
L i (207
internal bus o o) n=0-

(ilywhen port is control signal output

When the port mode register (PMXn) is set (1) it is possible to read the control signal pin condition when the port read
instruction is executed.

When the port mode register is reset (0) it is possible to read the condition of the internal control signal.
(i) When port is control signal input

When the port mode register is set (1), it is possible to read the pin condition of the control signal when the port read
instruction is executed.

wPD70320/22 N E C

10.1.2 Port Functions
(1) POO-07 (port0) three state input/output

This is a special 8-bitinput/output port. Besides functioning as a general purpose input/output port whose input/output
can be specified in bit units, it can also function as a system clock pin (for use with PO7). Switching for these can be carried
out in bit units by specifying the port 0 mode register (PMO) as well as the port 0 mode control register (PMCO).

Chart 10-1 Port 0 Operation (n=0-7)

PMCOn=1 PMCOn=0
PMOn= 1 PMOn=0
P00 input port |output port
POl input port joutput port
P02 input port | output port
P03 input port | output port
Po4 input port |output port
P05 input port {output port
P06 input port joutput port
pPo7 CLKOUT output input port |{output port

(i) Port 0 mode control register (PMCO)

This is an 8-bit register used to define the use as port/system clock output for port O in bit units. As a result, the PMCO
register can be accessed by 8/1-bit Read/Write operations using memory access. If the corresponding bit of the PMCO
register is set (1) it defines the system clock output mode (P07), if reset, they go to port mode. All the bits of the PMCO regis-
ter during RESET input are reset (0) and it goes to port mode.

Fig. 10-5 Format for Port 0 Mode Control Register (PMCO0)

Symbol 7 6 5 4 3 2 1 o Address

pmco | PHCO

0 0 0 0 0 0 0 XXFO02H

0 POn=port mode]

1 PO7=system clock output

(i) port 0 mode register (PM0)

PMO is an 8-bit register which specifies input/output for port O using bit units.

PMO can be accessed by 8/1-bit Read/Write operations using memory access. When the corresponding bit in PMCO is
"0", the PMO becomes valid.

All bits are set (1) using RESET inout

10.3

N E C pPD70320/22

Fig. 10-6 Format of Port 0 Mode Register (PM0)

Symbol 7 6 s 4 3 2 1 0 Address
R PMO | MO | PMO | PN | MO | MO | MO | IPMO
AL 6 s N 3 2 1 o XXFO1H
0 output
PMCO
=0
1 input
(n=0-7)
(2) P10-17 (Port 1) three state input/output

This is a special 8-bitinput/output port. Besides functioning as a general-purpose input/output port whose inputand out-
put can be specified in bit units, it functions as a number of control pins. Switching for these can be carried outin bit units by
specifying the port 1 mode register (PM1) as well as port 1 mode control register (PMC1).

The P10-P13 terminals can read the pin levels by direct accessing of port 1 (P1).

Table 10-2 Port 1 Operations (n=0-7)

PMCin=1 | PMC1n=0
— PMin=1 | PMIn=0
P10 MUnput N/
P11l | INTPG input
=r INTP input
P13r1N—TAK output TINTP2 ir;put
P14 INTRinput | #2920, | output port

P15 | TOUT output| input port output port
P16 | SCKO output| input port output port

P17 | READY input| input port output port

(i) Mode control register (PMC1) for port 1

This is an 8-bit register which can specify in bitunits the use of port 1 for port-control signals or as input/output. As aresult,
the PMCH1 register can be accessed by 8/1-bit Read/Write operations using memory access. When the corresponding bitin
PMC1 register is set (1) it defines the control signal input/output mode, if itis reset (0), itis in the port mode. However, the P10-
P12 pins are fixed in port mode.

Fig. 10-7 Format for port 1 mode control register (PMC1)

Symbol 7 5 5 A 3 2 1 0 Address
PMC1 | PMC1 | PMC1 | P
PMCL| "7y 5 5 him m;c1 [}] 0 XXFOAH
0 Pin=port mode
1 P1n=control mode

(n=0-7)

10.4

WPD70320/22 N E C

(i) Port 1 mode register (PM1)
The PM1 is an 8-bit register which specifies input or output for port 1in bit units. As a result, the PM1 can be accessed by
8/1 bit Read/Write operations using memory access. When the corresponding bit of PMC1 is "0” PM1 becomes valid.

Fig. 10-8 Format of port 1 mode register (PPM1)

Symbol 7 6 5 4 3 2 1 o Address
PAL | PMI | PAIL | PMI
PAlL 7 s s . 1 1 1 1 XXFO09H
0 Pin=output
PAMIC
1 P1in=input
(n=0-7)
(3) P20-27 (port2) three state input/output.

This is a special 8-bit input/output port. A side from functioning as a general-purpose input/output port for which input/
output can be specified in bit units it also functions as a number of control pins. Switching for these can be carried out in bit
units by specifying the port 2 mode register (PM2) as well as the port 2 mode control register (PMC2).

Chart 10-3 port 2 operations
I

PMC2=1 | PMC2=0

| PM2n=t | PM2n=0 |
>P?O/ [omaRQO imput | input | output port |
vPZi \mout;ut input outputh;r}q
P22 | TCOouput | input | output port
P23 | DMARQ1 input input (;Jtpu! port
P24 bM;;f;%Toutpm input output port
P25 T__C,Ioutput* »ginput output pc;t
;2(; mom;t inpuf o Vourtprutwpr)rortr
;E{L HLDRQ anpﬂ input output porli't

(i) Port 2 Mode Control Register (PMC2)

This is an 8-bit register which can specify the use of port 2 for port/control signals or as input/output port for port 2 in bit
units. If the corresponding bit of the PM2 is set (1) it defines the control signal input/output mode, if it reset (0), it goes to port
mode. During reset input, the PMC2 register is reset (0), and it goes to port mode.

Fig. 10-9 Format of Port 2 Mode Control Register (PMC2)

Symbol 7 6 5 . 3 2 " 0 Address
PMC2 | PMC2 | PMC2 | PMC2 | PMC2 | PMC2 | PMC2 | PMC2
PMCz| 6 s . 1 2 1 0 XXF12H

0 P2n=port mode

1 P2n=control mode

(n=0-7)

10.5

NEC

(ii) Port 2 Mode Register (PM2)

The PM2 is an 8-bit register which specifies input/output for port 2 in bit units. As a results, the PM2 can be accessed by

8/1 bit Read/Write operations using memory access. When the corresponding bit in PMC2 is 0, PM2 becomes valid.
All bits are set (1) by RESET input.

LPD70320/22

Fig. 10-10 Format of Port 2 Mode Register (PM2)

Symbol 7 6 5 4 3 2 1 o Address
puz | pmz | pyz | paz | opmz | opmz | opm2 | opa2
I I 6 5 4 3 2 1 o | XXFL1H
0 P2n=Qutput
PMC2

1 P2n=Input

10.2 Port T (PTO0-PT7)

Port T is an 8-bit input port which can vary the threshold voltage (reference voltage) in 16 stages. Comparator operations
are carried out by analog input.
10.2.1 Hardware Configurations

Port T contains a multiplex circuitry (MPX) which selects one of PTO-PT7 comparator inputs, a Vth pin for standard power
supply input to generate a matching voltage (Vref) in 16 steps ranging from 1/16 X Vth up to 16/16 X Vith, of a port mode T
register (PMT) which controls MPX and of 8 latches (Fig. 10-11). The Vref and PTO-PT7 input (selected by setting up PMT) are
compared using a comparator and the result is then latched into the port T input latch.

10.6

WPD70320/22 N E C

Fig. 10-11 Block diagram of Port T

input buffer

PTO O

|
]

TYYYYTYY

PT1

inter-
nal
bus

PT3 O — 0 input
buffer

1
|

_J Vrer

VRF3

VRF2
] 4 Iz |—— VRF1
VRFO

PMT

10.7

N E C pPD70320/22

10.2.2 Port T Mode Register (PMT)

PMT sets up the comparison voltage (Vref) for the comparator as one of the 16 steps as indicated in Fig. 10-12.

PMT can be accessed by 8/1 bit Read/Write operations using memory access. All of the PMT bits are reset (0) by RESET
input.

Fig. 10-12 Format of Port T Mode Register (PMT)

Symbol 6 s . 3 2 1 o Address
Tl - _ _ _ vnzF.F VlleF VRlEF VROF,F XXF38H
VREF | VREF | VREF | VREF Vaer

3 2 1 0

0 0 0 0 Viux16.16
[)] 0 1 VruX 1./16
0 (] 1 0 VruXx 2 /16
0 0 1 1 Vrux 3.716
0 1 0 0 VX 4 /16
0 1 0 1 VX 5,16
0 1 1 0 Vrux 6,716
[1 1 1 Veux 7./16
1 0 0 0 Viux 8,16
1 0 0 1 Vmx 9./16
1 0 1 [Vmix10/16
1 0 1 1 VmuXx11/16
1 1] 0 Vmx12/16
1 1 0 1 Veix13./16
1 1 1 0 Vrux 1416
1 1 1 1 Vrix 15,716

10.8

WPD70320/22 N E C

11 STANDBY FUNCTIONS i
The uPD70322/70320/70320 has two standby function modes which control the clock operation.

@ HALT mode amode which suspends clock supply for the CPU. However, a number of CPU status data and RAM are
all retained and peripheral hardware continues operation. Intermittent operation by combination with
normal operation mode is used to lower total system power consumption.

® STOP mode. amode which stops the oscillator which leads to a complete stop of the entire system. Internal RAM and
port output data are retained as they require only very low power consumption.

Setting up of various modes is carried out using the HALT and STOP instructions.

11.1 Standby Control Register (STBC)

The STBC is an 8-bit register which controls the standby flag (SBF).

SBF is used for the return decision from STOP condition. SBF is reset (0) only by starting power supply voltage (Vdd) and
set (1) only by instruction execution for special function registers. SBF can be tested to distinguish whether there is arelease
after reset or return from STOP mode.

STBC is initialized by reset.

Fig. 11-1 Format for Standby Control Register (STBC)

Symbol 7 6 5 4 3 2 1 o Address

STBC 0 0 0 0 0 0 0 SBF |X X FEOH

Vdd rising edge ~ 0

operation of instruction for

speciai function register ~ i

11.2 HALT Mode

This is a mode which suspends clock supply for the CPU.

Setting up the HALT mode during CPU empty time reduces the overall power consumption for the system. When the HALT
instruction is executed, it goes into HALT condition.

In HALT mode, the CPU clock is suspended, program execution is stopped and the contents of all of the registers and the
internal RAM immediately before the suspension are retained. Table 11-2 illustrates conditions of all relevant hardware
blocks.

11.2.1 Release from the HALT Mode

HALT mode is released by a nonmaskable interrupt (NMI) request, unmasked maskable interrupt request and RESET
input. (Fig. 11-12) It goes from HALT mode to macro-service and DMA processing using macro-service requests or DMA
processing requests (Fig. 11-3). When macro-service and DMA processing are completed, it again returns to HALT mode.
However, if conditions such as those illustrated in Chart 11-1 appear during macro-service and DMA processing, the HALT
mode is released.

(1) Release from HALT mode through an interrupt request

(i) when a HALT mode is set during an interrupt processing routine, it is released by generating unmasked maskable inter-
rupt requests with a priority higher than that of the interrupt under processing or the generation of nonmaskable interrupt
requests.

(i) in all other cases

The HALT mode is released by generating a nonmaskable interrupt request or by generation of unmasked maskable
interrupt requests regardless of their priority.
(2) Release by RESET input

Identical to normal reset operations

111

NEC

WPD70320/22

E

interrupt request

Fig. 11-2 Release from HALT Mode using Interrupt Requests

e

A J

HALt instruction execution

y

CPU HALT operation

!
I
|
|
|
|
I
\

Fig. 11-3 Starting Macro-Service/DMA

o mode

During HALT Mode

CLK Ww_m

- clock suspension

macro-service/

DMA request
HALT

i
|
1
|
|

instruction CPU HALT operations

1

H 1
T !
|
| |
I macro-service/ |

DMA ! HALT mode

|
-

execution

Chart 11-1 Operations after releasing HALT mode using interrupt requests

Nonmaskable
interrupt
requests
maskable
interrupt
request

request

Release Sourcel

EI Condltlon

l‘ branches to veclor address alter release

1

branches to veclor address after release

DI Condmon

|
i

branches to veclor address after release
|
|

-

macro-service lwhen macro-service is started and macro-

service counter is OH, it branches to vector
| address. If macro-service counter does not
reach OH, it goes to HALT condition a
‘ second tlme

| executes nexl mstructlon alter release

when macro-service starts and macro-
service counter is OH, HALT mode is
released and the next instruction is
executed

DMA request

l when DMA starts and terminal counter is at
OH it branches to vector address. If
lermmal counter does not reach OH, it
goes to HALT condition a second time

|

when DMA starts, and terminal counter is
OH, HALT mode is released and the next
instruction is executed

11.3 STOP Mode

normal operation

This is a mode which suspends the oscillator. It results in a very low power consumption as the complete system is
suspended. Execution of STOP instruction causes it to go into STOP condition. In STOP mode, all of the clocks are suspend-
ed. Program execution is suspended and all of the register values immediately before suspension and the contents of the
internal RAM are retained. Table 11-2 illustrates the condition of all hardware blocks.
11.3.1 Release from STOP Mode

STOP mode is released by using NMI request or by RESET input.

(1) Release by NMI Request (Fig. 11-4)

When the effective edge is input via the NMI pin, oscillation is restarted. The time base counter (TBC) starts operation and
measures a period of several tens of milliseconds until the oscillation stabilizes.

As a result, after release from the stop mode, clocks are not immediately supplied, but the clock supply starts after the
computed time of transmission stability using TBC.

(2) Release by RESET Input

Identical to normal reset operation.

11.2

pPD70320/22

NEC

Interrupt request

Fig. 11-4 Release from STOP Mode Using NMI Input

1

o I

1

1)

|
i

0 I I

from NMI input

=T

[
i
!
|
|

suspension of
oscillation

time base counter

(.
|
|
|

Execution of

STOP instruction *——————CPU STOP operatlon__lI

t
|
|
|
|
.
t

|
1
|
[
|
count time |
i
I
|

Table 11-2 HALT Mode/STOP Mode

Item HALT Mode STOP Mode
Oscillation Operation
Internal System Clock Stops
16-Bit timer
Time base counter
HOLD circuitry
Operation Stops

Serial interface
Interrupt request controller
DMA controller
1/0 lines Retained Retained

AO-A19 Retained Retained
Bustines

DO-D7 High impedance High impedance
R/W output High level High level
Refresh operation Operation/Stop Stopped

Data retention

CPU status, RAM
contents and internal
data are all retained

CPU status, RAM
contents and internal
data are all retained

Released by

O nonmaskable
interrupt

O maskable interrupt
request

O input

O macro-service
request*

O DMA*

O nonmaskable inter-

rupt request
O RESET input

* again returns to HALT mode after processing of macro service and DMA

1.3

normal operation

NEC

uPD70320/22

12. OPERATIONS AFTER RESET

When a low level is input to the RESET input pin a system reset takes place and the hardware goes into the condition as
illustrated in Table 12-1. When the RESET input goes to high level the reset condition is turned off and the program execution

is started. The contents should be initialized in the program as needed.

Table 12-1 Conditions after Hardware Reset

I T e
Address* (least Condition
Hardware (symbol) 1signiﬁcant 12-bit) | after RESET
program counter PC | 0000H
T
program status word PSW FOO2H
data memory ! undefined
by I .
general-purpose register AW, CW, DW, BW, SP, BP, IX, Y| EFEH-EFOH undefined
internal RAM T
DS1, SS, DSO [EEEH, EEAH, EE8H 0000H
segment register
PS | EECH FFH
PO, P1, P2 iFOOH, FO8H, F10H
port register [undefined
PT ! F38H
ports PMO, PM1, PM2 1F01H, FO9H, F11H|| FFH
port mode register T
PMT | F3BH OO0H
port control register PMCO, PMC1, PMC2 IFO2H, FOAH, F12H| 00H
f
timer register TMO, TM1 | F80H, F88H undefined
modulo/timer register MDO, MD1 “ F82H, F8AH undefined
t
timer unit timer control register TMCO, TMC1 | F90H, F91H 00H
interruptrequest control register| TMICO-TMIC2 1 FOCH-FOEH 47H
macro-service control register TMMSO0-TMMS2 | F94H-FO6H undefined
DMA mode register DMAMO, DMAM1 i FA1H, FASH 00H
DMA DMA control register DMACO, DMAC1 | FAOH,FA2H | undefined
controller interruptrequestcontrol register DICO, DIC1 i FACH, FADH 47H

*XX in address (most significant 8-bit) is value designated by IDB register

121

WPD70320/22 N E C

Table 12-2 Conditions After Hardware Reset (continued)

Hardvare (mbo) stess e | Goncir
serial mode register SCMO, SCM1 | F68H, F78H 00H
serial control register SCCO, SCCt : F69H, F79H 00H
baud rate generator set up value BRGO, BRG1 | F6AH, F7AH 00H
receive buffer register RxBO, RxB1 } F60H, F70H undefined
transmit buffer register TxBO, TxB1 ! F62H, F72H undefined

}
serial interface | serial error register SCEOQ, SCE1 | F6BH, F7BH 00H
(error) SEICO, SEICt | F6CH, F7CH
interrupt request control register (receive) SRICO, SRIC1 } F6DH, F7DH 47H
(transmit) STICO, STIC1 1 F6EH, F7TEH
macro-service control register (receive) SRMSO, SRMS1 : FOSH, F75H undefined
(transmit) STMSO, STMS1 | F66H, F76H
time base interrupt request control register TBIC i FECH 47H
user flag register FLAG ! FEAH O00H
internal data area base register DB i FFFH FFH
“processor control register PRC ! FEBH 4EH
wait control register WTC | FE8H FFFFH
refresh mode register RFM E FE1H) FCH
standby control register STBC l FEOH **undefined
external interrupt mode register INTM } F40H 00H
ii’t(et:lr'ﬂglt interrupt request control register EXICO-ECIC2 : F4CH-F4EH 47H
macro-service control register EMS0-EMS2 | F44H-F46H undefined

* the XX of the higher 8-bit address is the value specified by the IDB register.

** the standby control register (STBC) cannot be reset using instructions once it has been set. It is cleared
by a rise in the power supply voltage.

122

N E C WPD70320/22

13 INSTRUCTION SET
The pPD70322/70320 instruction set is upward compatible with the uPD70108/70116 in native mode.
13.1 Instructions in addition to the uPD70108/70116
The new instructions in addition to the uPD70108/70116 are listed as follows.
(1) Conditional branch instruction
OBTCLR...... Bit test instruction for special function register.
When the condition of the bit of the special function register is 1, execution of BTCLR can be used to
reset that bit (0) and branch to the short label described in the operand.

Coding format Operand
Mnemonic

special function ! special function ! e
register address ! branch register biti destination

BTCLR mem8 g imm3 é short-label
(2) Interrupt instruction
ORETRBI...... return instruction for register bank interrupt. This is used when returning from the interrupt processing
routine which has used register bank switching function. It can not be used for return from vector
interrupt.
Coding format
Mnemonic operand
RETRBI none
OFINT instruction which indicates that interrupt processing for interrupt controller is completed.

When used for interrupts exclusive of NMI, INTR and software interrupt, it is necessary to execute
before the return instruction from interrupt. It can not be used for NMI, INTR or for software interrupt.

Coding format Mnemonic coerand
Mnemonic operand
FINT none
(3) CPU instruction
OSTOP....... transition instruction to STOP condition
Coding format Mnemonic operand
STOP none

In addition, in contrast to the uPD70108/70116 instruction set, there are some instructions for the yPD70322/70320 which
must be used with care.
O input/output instruction when the PSW IBRK flag is reset (0)
primitive input/output instruction interrupt takes place without executing instruction
O FPQO instruction interrupt takes place without executing instruction

131

pPD70320/22

NEC

13.2 Instruction Set Operations

Table 13-1 Description of Types of Operands

Identifier Description

reg 8/16 bit general purpose register

reg 8 8-bit general purpose register

reg 16 16-bit general purpose register

dmem 8/16-bit memory location

mem 8/16-bit memory location

mem 8 8-bit memory

mem 16 16-bit memory

mem 32 32-bit memory location

imm constant in 0-FFFFH range

imm 3 constant in 0-7 range

imm 4 constant in 0-FH range

imm 8 constant in 0-FFH range

imm 16 constant in 0-FFFFH range

acc register AW or AL

sreg segment register

src-table name of 256-bit translation table

src-block name of block addressed by register IX

dst-block name of block addressed by register IY

near-proc procedure within current code segments

far-proc procedure within other code segments

near-label label within present code segments

short-label label from instruction end to -128/+127 byte range

far-label label within other code segments

memptri6é words containing offset of locations within current program segments to which control
is about to be transferred

memptr 32 double words containing segment base and offset addresses of locations inside other
program segments to which control is about to be transferred.

regptr 16 16-bit general purpose register which contains offset of locations inside same
code segment to which control is about to be transferred

pop-value number of bytes taken from stack (0-64K, normally an even number)

fp-op immediate value which distinguishes instruction code for external floating point
operations chip

R register set

Table 13-2 Description of Operation Code
Identifier Description

w word/byte field(0-1)

reg register field (000-111)

mem memory field (000-111)

mod mode field (00-10)

S:wW when S : W = 01, data = 16-bit, for all other cases, data = 8-bit

X, XXX, YYY, 22Z

when S : W = 11, data sign is expanded and forms a 16-bit operand
data for distinguishing instruction code for external floating point operations chip

13.2

N E C uPD70320/22

Table 13-3 Description of Operands

Identifier Description
AW W accumulator (iG;bit) S T
AH accumulator (higher byte)
AL accumulator (lower byte)
BW register BW (16-hit)
cw register CW (16-bit)
CL register CW (lower byte)
DwW register DW (16-bit)
SP stack pointer (16-bit)
PC program counter (16-bit)
PSW program status word (16-bit)
IX index register (source) (16-bit)
Y index register (destination) (16-bit)
PS program segment register (16-bit)
DS1 data segment 1 register (16-bit)
DSO data segment O register (16-bit)
SS segment register (16-bit)
AC auxiliary carry flag
CcY carry flag
P parity flag
S sign flag
V4 zero flag
DIR direction flag
IE interrupt enable flag
\ overflow flag
BRK break flag
MD mode flag
() memory contents indicated in ()
disp displacement (8/16-bit)
ext-disp 8 signed 16-bit displacement expanded from a signed 8-bit displacement
temp temporary register (8/16/32-bit)
tmpcy temporary carry flag (1-bit)
seg immediate segment data (16-bit)
offset immediate offset data (16-bit)
- transfer direction
+ addition
- subtraction
X multiplication

division

% modulo
A logical product ("and”)
Vv logical sum ("or”)
ha exclusive "or” ("or” else)
xxH hexadecimal two-digit number
xxxxH hexadecimal four-digit number

133

WPD70320/22 N E C

Table 13-4 Description of Flag Operations

Identifier Description
(blank) no change
0 cleared to 0

1 setto 1

X is set or cleared according to results
U undefined

R number previously saved is restored

Table 13-5 Memory Addressing

mem mod 00 01 10
000 BW+IX BW+IX+disp 8 BW+1X+disp 16
001 BW+IY BW +1Y +disp 8 BW +1Y +disp 16
010 BP+IX BP +IX+disp 8 BP +IX+disp 16
011 BP+IY BP +IY +disp 8 BP +1Y +disp 16
100 IX IX +disp 8 IX +disp 16
101 Iy IY +disp 8 1Y +disp 16
110 DIRECT ADDRESS BP +disp 8 BP +disp 16
111 BW BW +disp 8 BW +disp 16
Table 13-6 Selection of 8/16-bit general purpose register Table 13-7 Selection of segment register
reg W=0 W=1 sreg
000 AL AW 00 DS1
001 CL Ccw 01 PS
010 DL DW 10 SS
011 BL BW 11 DSo
100 AH SR
101 CH BP
110 DH IX
111 BH Iy

Starting with the following page, illustration sets will be explained in chart from.

In the column indicating the number of clocks, when there is an instruction (with W bit) with byte or word processing, the
figure ontheleft side of the slash (/) indicates value for byte processing (W =0) and the figure on the right side indicates value
for word processing (W=1) (instruction for primitive block transfer/input/output is coded in each column).

Number of clocks includes the following times needed for processing:

O decode

O EA generation

O operand fetch

O execution
Instruction bytes have been prefetched.

134

pPD70320/22

C

13.3 List of Instruction

I T ‘91321
k, 918210y 1 sox 91001 | 0TI
. waw‘daa
B e (wour) V-2 wow Fax pow | MTITO0000T Sa1wow
FERRSS. EX) K4 B0 F01 T |[MITO0000T daa‘dau HOX
W (TV+ma)->1V 1 TTTOTOTT | 298218 SNVYL
| gruow—9yias V-2 wow Fau pow | TOTT000T jgueugrdal VAad1
X | XX HY—AD ‘NY¥dI'd 04DV 14°Z’S I OTTTITOO0T | HV'MSd
| ADMYEI'd '04'DV 14 'Z'S—HY T TTTT1T100T | MSdHV a
=
| @ +zewsu)=15a ggwou g
| (gguaw)sg1d01 v-g | wew o1 pow | 00 TO000TT | g =
| (¢ +ggwow)—0Sa ggwaw 2
” (zgwaw) »g[3aa V-2 wow Bos pow | TOTOO00TT ‘9182105 Mv
, I Baas—(gTwou) V-2 waw Faasgpow | 0 QT 1000 |Baas‘g[waw W
- | m
. ENTINGY g X K4 F18us0 T 1| 00T 10001 | 3aas‘grdar W.
IR S . - 8
1S°0SA'SS : 3a1s (9Twau)—doas v-2 wow Fousgpow | O TTT 000 |9gruwawsais
T | i 1SU'0SU°SS : Bauas [IEERSS ERE} 4 Ho1 JousQ T T | OTTTO00O0T | 9I83x3aus
ﬁ , v -(wowp) :< 2+EQEE [=M uaym ¢ MTO000T 0T | 2ovwwp
j L -(WAWp)) = A USYM
| | (wowp) -V ‘(I + EuEE “HV [= M Uaym 0000101 | wawpooe
d i (Wawp) ~TY 0 = M UYMm € o M o>
{ | wunl—H9a £-2 doa MTTIOT wwi'dad
(! EE_\VAE@EV @\ M waw (g 00 pow ,?)ﬁ 10 O 0 .H 1 EE_.EWE
‘, T T o o (waw)-—»3a4 V-2 wow Fox pow [MTOT000T wawdal
1 o o Bas »(wow) V-2 wow Fou pow | MOOTO000T Fod'wow
o o Foa—idau 4 Boadox TTI |[MIOIOO0O0T Boa‘dou AOW
- SYOP | SALq | 01 Z2EVSIL 0TCEVSIL dnoss
uonerado joou | Joou ————— -4 puesodo on

ucou uonerado

-ut

135

C

~ALT+XI ~XI:0=d1d
oaf + XD ~@A&I°T + tv [= M Uaym

1+ AI-AI'T+XI ~XI:0=3¥d1d
XD ~Q&D 0 = M uyMm

MIOTIOTIOTI

y90[q-15p

WLS

1-AI'T+XI ~XI: Q=414
OQ%J + XD ~QAIT+AD I = M Udys

1+ AL -AL'T+XI XTI : 0= ¥Id
XD ~(&D 0 = M uym

MOTTIOTIOTI

}20[q-24s

WA

1-A1°7+XI~XI:Q=4Id
aaf + XD ~AI T+ AD [= M Uaysm

1+AI-AI'T+ XI >XI: Q= dId
(XD ~(A1) 0 = M UM

MITIOTIOTI

Yo0[q-1sp

NdWD

Lo M AT - XIoXI =g
EMA T+ X1 ~X1:0 = ¥IA
&1+ XD ~(I T+ AD 1 = M Uays

ml .wm .E_M—luz_tuc— %lmwo
+AI -~ +XI
(XD) ~(AD) 0 = M Usym

MITOOTIOT

¥90[g-15p

“§00[q-21s

AddNO

- Al -AI‘T-XI ~XI:1=3¥Id
T+ AL~AL'T+XI -X1:0=¥1d
XIT+ XD ~(A1‘T+AD [= M uaym

A R XSG
+AI ~ +XI -XI:0=
(XD ~(XD) 0 = M Uaym

MOT00TIO0T

}20[q-24s

“Y20[q-15p

NIAON

"doo] 8y} HXe ‘0 = Z PuB WO
aAOQE S awes

otoo0TIII

ZNd3dd

ANdJY

'dooj 8y} ixa@ ‘| = Z pue WdNO

10 YGdWD S! UOIONIISUI JBJSUBL} %00|q dARIWLd 3y} 4
"passeo0id si)i jdnuiaiul Buniem e si aiayl ji

(1-) PajuaWaI0ap SI MO PUE PAJNIAXa S| UONONASUI
JajsuURI} %00|q AW By} JO BIAQ IXaU 3Y} ‘0 = MD UM

T100TTITI

Zd3ayd

dddd

44y

"d00) 8Y} IX3 ‘0 = AD USUM
aA0Qe se swes

ootroorrIro

ONdHdY

"doo] 3y} Uxa ‘L = AD USUM

passasoid si §i ‘idnuiajul Buiiem e si aLyl i

*(1-) peluswaIdap S| MO PUB pPajnoexa S| uononsul
Jajsuel) %00|q aAiwd By} JO BIAQ IXaU 3Y} ‘0 = MO BIIUM

T0T00TTO

oddyd

uonerado

SY00[0
Jjo ou

sa14q

Jo ou

012eevrs9L

01T2€e¥vVS9L

3pod uonerado

puerado

SIUOWAUL |-

wPD70320/22

SUONINIISUI JoJsuel) ¥90]q

13.6

suononisul jeadal

WPD70320/22

C

o Z—X -Xi-t=did:-¢+Xl -XI-0=4did =
| (X1 'L+ X)) ~(MQ ‘L + MQ) L =M UM yoo(qoa5 S
b L=XI Xt b=dIg: L+ Xl ~XI: 0= i ES
. Ha ‘A_a%oou o 1 mrttotrto| ‘ma | wino 9%
| T + _
w Z—Al AL F=Hid ¢+ Al Al 0=4Id z
(MQ L+ MQ) ~(AI‘L+ Al | =M USUM wa 8
— Al PALI L= L+ Al “Al:0=4HIa) 5
| L b AL m_o;”e»_;a_oo Py ! MOTTOTLO| *0g-sp INEE
| : . F M =M Ua i]
, W v -(ma) I< — a) b >>C Um 1 MITIOTITII 208 M (]
boegeod R ﬁeo M USBUM | 1 <
, gwuwn) HY - +wEE_ 1= M USUM 1 « S
] W -(guuil) ‘HY : () - O = M USUM | z MITOOTTL | sowguun 10| 5
Mo v :+>>e “HY L= M USUM 1 *]
i 1 | 0e
e R L S LLLLARAE b
] ! K ~ = , 3
Lo (@ M G Y b= M usuM | |z MOTOOTTT | guursoe NI| @
+ -+ R SN SR } — e — SR B
i m 00011
| play 1a-9L MV | v TT0TT100 11110000 | puurgdsu @
i doa dou T 1 \, Wa
i | I L _ =
PIRYNA-OL MY [¢ 11001100 | TTTTO000O0 |giorghu | X | 3
i , H dol 000TT :
W MY - PIRY Ha-9L | v ltoottroo [1110000 | puwrgios | |5
[O S S S - o o _ o | o IR
| Joa Hoa T 1 a
, MY - PI® L€ Zoo:of::oooo gilaagiol |
Sid A LV ” 012EFS9L 012EVSIL | s
S S R P S M uonerado H wwuwﬁ , ._m%va_ E— : —- pueiado | dpuowaUW | T
gey ; ! | apod uonerado ut

137

C

wPD70320/22

x [x [[x] x MY A £-2 MOTTTO000 | wuroe
XX X XXX AD —wwt — (wour) — (wowr) 9-¢ wow [TOopow i MSO00000T | wurwow
XXX XXX AD —wut—331831 v-€ 81 TTO0TT|{MS00000T wurdar
XAIXIXIX|X|X AD— (waw) —3a1 331 $-2 wow 831 pow | MTOTITO0O00O waw'dal
X | X | X “ X | X | X AD—331 — (wow) — (waw) v-2 wow 391 pow { MOOITO000 Fos‘wow
XXX XXX AD —3ax 331331 2 8014 891 T T | MIOITOOO dox'daa 24dNS
s x I x| x g T i €-2 MOTTOTOO | wuroe
XXX IX|X|X g — (WIw) — (wow) 9-¢ | wdw [O Tpw MS00000T | wuw'wow
XXX ixixix wuwl—F31321 v-¢€ 81 TOTITI | MS00000T wuwsax
(wow) —Ba1—3a1 V-2 waw 331 pow [MTOTIOTOO0 wawda.l
3o — (wow) — (wow) v-2 waw 331 pow [MOOTICGTOO For‘wow W
301 —3o1 5801 ¥4 81 831 T T | MIOTIOTIO0O Bax'dau 4ans m.”
- S
e ot £-2 MOTOT000 | wuroe mu
X | X yw X X | X AD+wWwl (wour)— (waur) 9-¢ waw Q[opow MSO00000T | wwrwow M..w.
3 —T . 3
XX | XX x| X AD + w4 321831 P-€ | 991 0TOTT|[MS00000T | wwrsas 5
vm x. y.‘ xﬁw; MI AD+ (wouw) +321 301 V-2 wow Bax pow | MTOOTO0O0O0 | wowidos W..w...»
X | X Xx%xt X KD +801 + (wowr) — (wour) V-2 wow Fas pow | MO OO TO0O00 | Foruwuw m.
r)\ x\rx X | XX AD+8ax 4321801 [4 890 B0 11 MIO00T1000 Baxtdat oaav
xx x| x | x| w1 o €-2 MOT00000 | wurode |
X x XXX | X Wit (Wou) — (Wwaur) 9-¢ waw) QOpoWw MSO00000 T | wwrusw
‘xl‘\\ x| X le? wwit 4 391391 v-¢€ 34 00011 |MS00000TI wwydal
M- X x| x| (wow) + Bar—Fal V-2 wow Foa pow MT 000000 wouwrdad
X M X Xu Ao 4 (wow) —(wow) V-2 wow Faa pow | MOO0OO000O00O dor'wow
X | X | x|x X. X LN EXES. £ X 2 go4 831 [T (MIO000000 daargau aaqyv
RN p0P | salk an
zis .W«.c\/ i vonerado ww .o_a Jo .ow 01cevs vacuo__“:M._Ma“ §91L m puessdo | ouowsuw _u_m.wwu

13.8

pPD70320/22

C

*dn 398 9q UED ST
ySnoiy) | wiolj sanfea ¢ 13)s13a1 D UO USAIZ S sudip (D9 Jo Jequinu -
sudip 4Og Jo Jaquunu Jo z/1 a

wog;onx;sug 95BAI0OP/ASEAIOUL

suonpnjsul uonelado 4Oyg

x| x| x _ X x 1 —91821 91804 1 ga1 10010 91321
XX wa ;.X 1 — (wow)— (waw) | V-2 wow [OQOpow MITIIITTI wau
w}x x| X X) [—g804—-88304 4 1 TOOTT|OTTITITI g1 0dd
[1 +91821—9[32. 1 21 00010 91821 T
T+ (wou)—(wauw) y-g | wew 00 0pou ﬂﬁ T1TTIL wow
T +8321—g304 z | 34 0o0o0ttlorTTIILT gdas ONI
wow () 0 0 pow
| g-¢ [010T0T00|TLTT0000 g wow
‘ o g0 000711
€ ,o;::oo 11110000 g 3ad A yy0Y
o Lﬁ waw (O O pow A
G-€ (00010100 |TTTTI0000 g wouw
- 11 os 000TT1 R
€ ooo;;of::oooc g dau 104
suls aum sus—3uls (109 ISP | \N 0 aolﬁm\o mwlﬁ 10000 mr:z]o
S — S —— l&lli‘?v“l\vll -+
dus (D¢ 24s —Butns cum Zl?:m aod sp | [01000100 |TTTT0000 sSvans
us:,wwrsym\u._“mtszw and Eiu._:w and Efﬂ - Z 0 Mmﬂﬂﬂ.ol‘.ﬂ\mﬂimﬂwﬂi‘ | mﬁ::ﬁ
o 1 R PR I N IR
sonmsado _ wowm w%% 012E¥59L|012€VS9L % ST —

ouQu uonerado

139

C

uPD70320/22

pueiado 1811 3y SB JsISal
awes oY) $37eUSISIP 11 ‘PANIWIO SI 31 J] ‘PAINWO 3G Aew pueiado puodds

Pl I -A‘l ~AD:¥q 9 - wnpoid gruu
nininx|xin 0 A0 ~AD :1q 9] - 1wnpoxd 9-% | wew 331 pow | TQQTOTITO ‘grwow
| grwwr X (9jwow) —9sas ‘91394
| I ~A‘l -AD:Uq 91 -wnpoid gruwi
nninix|xin 0 —A ‘0 —~AD : ¥q 9] - 1npoxd 12 Saa 851 T 1 |TO00TOTTO |*(‘9I33)
i it X 9§81 ~913 ‘9133
1 ~A‘l —+AD:uq 9] - pnpoid guun
ninn 0 ~A ‘0 ~AD: 1q 9] - 1onpoid G-€ | wow 31 pow | TTQOTOTTO ‘gruow
guiwi X (9waw) 9[3as .wﬂuw._
1A'l A guiuit
njnn 0 ~A‘0 ~AD € o0 31 LT [TTOTOTTO |%(9139)
| guui X 91321 ~9[3a1 ‘grdaa
g ,, I +A'‘l —+AD : uoisuedxs usis gV = md
NNy ex|n 0 —A ‘0 —~AD : uoisuedxa usis yv = M ¥-¢ | wow poIpow | TTTOTTITTL grwouw 3
QIwaw) X MV MV Ma 1=
U S S =
I »A‘T -AD : uoisuedxa udis a\v = Md ..m_l..
ninnixixin 0 ~A‘0 ~XD: uoisuedxa usis pv = Md 4 AL TOTTT{TTITIOTTIT 9131 3
9IS X MV MV Md 8
- RO S S =
I I »A‘l -AD : uolsuedxa udis 7V = HV m
ninlnl=x x|{n 0 ~A ‘0 ~AD : uoisuedxas udis TV = HV V-2 wow [QIpow [QTTIOTITITITI guaw (=}
| (BWaUN X TV ~MV b3
- 1 -A‘1 : uoisuedxa usis Ty = HV Ww.
0 +A‘0 isuedxa udis Ty = HV 3. 3. - Q
n @I X IV MY [4 r.t TOTIT|OTTIOTTIITI gial INW| s
o T—A "T—=AD: L=Md
n 0—A "0—AD: 0=Md v-2 wow QO Tpow | TTTOTTTIT grwouw
: _ | (9rwsu) X MV—MV M A
| I—A "1-AD: IT=Md
A< in 0—A "0—AD: 0=md 4 84 00TTT|TTITOTITI grAaa
Lol 9IFM X MV—MV'MA
! I1—A "T—>AD: 0*HV
nnaixixin 0—A “0—AD: 0 =HV ¥-2 wow QO TIpow OTTOTLITITTI guaw
o T S | (guaw) X f¥—MV
T—A "T—AD: 0*HV
nninixixin 0—A "0—AD: 0=HV 4 1 00TIT |[OTTIOTTITII gdat TN
e 8321 X TVoMVY
Z{S|d|A AV Yoo SUq | 0T2EPS9L | 0TCEVPSIL dnoig
uonjesado Joou | jo-ou puesado | ouowsuw
s3ey : 9poo uoreIado

13.10

pPD70320/22

C

dA D

nnn

(0'T)—0d (2°€)—>Sd'0->ud'0—dl

9-dS —»dS'0d—(9—-dS'S~dS)

L= Sd—(¥—dS '€—dS)'MSd—(2—dS'1-dS)
H444.2—0 >(9 1 waw) + dwa) pue 0 <(9 | waw) + dwa} UsYM
10 H444Z < (91 waw) + dwa) pue o< (91 waw) + dwid) Usym
(91woaw) + dwa} -my ‘(9 Lwaw)oedwal -Mma

| —Hd442 01 0 > (9 Lwoew) + dwa} pue 0 < (9lwaw) = dway
10 H4d4/ < (91 wew) pue 0 < (9iwaw) + dway udUM

MY ‘Ma -dwa}

wow

111 pow

IT1T1O0TTITILL

grwaw

(0T)—0d (2'€) »Sd 0= 44 0—3Il
9-dS—dSDd—(9—-dS's—dS)
Sd—(¥—dS'e—dS)'MSd—(2-dST-dS)

| — H444/—0 >916a1 + dway pue 0 <9l Bai + dwa} Usym
10 H444Z < 91691 = dwa) pue o< 9LBal + dwsa} uaym
g16a1 = dwa} MV ‘g1 6asopdway -ma

| ~Hdd44Z 03 0 > 91681 + dway pue 0 < 9LBal + dwa)

10 H444Z < 91691 pue 0 < 91681 = dwa) uaym

MY ‘M -dwsa}

dau

T1Itt

ITrrorrtect

ICER

(0T)=Dd (2°€) »Sd0—>N¥d' 031
9-dS—dSDd—(9-dS's—dS)
Sd—=(?—dS€-dS)MSd—(Z—dS'T-dS)

| — H4/—0 >(gwaw) + dwa} pue Q <(gwaw) + dwa} UBYM
10 H4/Z < (gwaw) + dwa) pue o< (gwaw) = dwa} Usym
(gwow) + dway -V ‘(waw)oedwa) -HY

1 —H4. 01 0 > (gwaw) = dwa} pue 0 < (gwaw) + dwa}

10 H4Z < (gwaw) pue 0 < (gwaw) = dwa) UsBUM

MY -dwsa}

waut

11 1pow

OTTOTITITII

—

guaw

IV

(0'T) »0d"(2°€) >Sd'0—->N4gd 041
9—dS—dSId—(9-dS'S—dS)
Sd—(r—dS€—dS)' MSd—(2—dS'T-dS)

| = H4Z - 0> gba1 =+ dwa) pue g<gbas + dwal uaym
10 H4/< 8681 = dwa} pue p<gbas = dwa} usym
gba1 + dway -y ‘gbaigdwa) -HY

1-H4Z 01 0 > gbas = dwa) pue < gbas + dwa}

10 H4/ < 8681 pue O < gbas + dwa) uaym

My -dwas}

uonesado

o0
Jjo ou

$914q
Jo ou

L.EX]

012€VS9L

T1t1t1!1

OTTOTTITLI

gdau

Al

012€VS9L

9p0d uonerado

puelado

dluowuu

SUOHONASUI UOISIAIP paubig

13.11

wPD70320/22

T (0°D) =D (2°€) »Sd0—-MUd 01 I T I

i 9-dS—dSDd—~(9—dS's—dS) ,

IR SAd—=(t—dS'E—dS) NSd—(Z-dS'T-dS)

! Ha444<(9 L wow) + dwa} usym

(91waw) + dway My .Mﬁsosvo\oaeﬁ *Ma ! |

Hd444 < (awsw) + dws} usym . wow how wow |

o My mQ -dwey| | PR QM OTTRMITTLOTTTL] areen ﬁ

(0 T)—Dd (2 €)—>Sd0—MUd0—H1 | i

Pl 9= dS—=dSDd—(9-dS§~dS) | <
| Sd—(F—dS€—dS) NSd—(2—dS'T—dS)

m H4444< 91631 = dwis) uaym

| 9iBai + dway My ‘gLbaidwa} - ma

| H4444 < 91691 + dwa) uaym

fou |
MV M3 - dws} N‘ ‘oﬁHMH ‘ﬁ‘ﬁ‘ﬁ‘oﬁﬁﬁw‘

w ” (0'T) =D (2'€) ~>Sd' 0= 041
| 9-dS—=dSDd—(9—dS'S—dS)
Sd=>(y=dS€-dS)MSd—=(Z—-dS'T-dS) |
H44< (gwaw) + dwa} usaym | !
(gwow) + dway -7y ‘(gwaw)ydwa) - HY i
Had < (gusw) .hqmm:%hwo 0TTO0TTTT
(0'1)—=Dd(2€)=>Sd'0—>NH' 021 |
9-dS—>dSDd—(9—dS'§-dS)
Sd—=¥—=dS€—dS)MSd—(T-dST-dS)
H44< gbas + dws) uaym |
gbas + dwaey -v ‘gbaipdws) - HY
H44 < gbai + dwa} uaym

MY - dwa)

v-g | wow g

SUOHONIISUL UOISIAIP PauBisun

RV

n

4 Aol 0T TTIT | OLTOTITILI gl

01geEvVsS9L|0L2EVYSI9L |
mv_o.o_u .) R B puerado | druowouw
Jo rou 9poo uoneiado

IV
- uonerado

1312

uPD70320/22

KX XX T+ (waw)— (woaur) v-2 wow T popow MITOTLITI waw
— — — —— 5o
I XX [+3a1301 4 B0 TTOTT |(MITOTILI da4 HAN mw
* e B — —_— — — L yi\mm
| | (wow)— (waur) V-2 wow Q popow | WITOTITI wow \w'w
+ Lol S S —— — —— — @3
394801 [4 34 0TOTLT |[MITOTTITT Hoa LON
N) T i WWI—MY | =M USUM N B o - 1
i ~ i o wwi—lY 0 =MUsum €- N.‘ - Mot ﬁvm«m 00 waroow o
| wwy - (wou) 9-¢ | wow [T Tpow | MS00000T | wurwow 3
°
S _— I i . — 3
x| ww —dau p-€ | %0 TTTTI | MS00000T | wurdes g
+ - - S _ . 3
X X (wow) —Houx V-2 wow Fou pow | WIOTTITOO wow ol M
. B P I g
x| X doa — (wouw) V-2 waw Fdox pow | MOOTTTO0O0 Foa'wow 5
N [. . S e . . . — 2
x| x dox o | 4 doa #o1 T T [MIOITTIO0O0 LERSER] JdND ¢
Vol Hdd444 - M@ sawn Jayio jjle ‘0 > Md ‘HO008 > MV UsUM , 1 10o0r1roo0t TMLAD (50
i] - . - R — S - . J 28
H4d - HV S8wn Jayjo j[e ‘0 - HY 'HO8 > TV UduMm 1 000T1TO0O0T MULAD mmv
e - . - 158
X x| nn 0—=HV " IV+HVOXHV—TV [4 01010000 TI0TOTOTLTI HALAD ww
do- 8 ! 1 - - - NN
X R X ninin HVO0% IV—>"TV'HV0 =" IV—HV [4 0I0T0000/00TO0TOTIT AdLAD | °
| [A T TTSADHO9TVTV | T T) S T
I L = AD 10 H46 <V UdUM 2
ol . [-DVIOVAAD~AD9—TV-TTV S
gl =9y 10 6 <(H40 VIV) Usum vt jrrrietoo}) SWOV g
HAOV IV > TVOV—AD 3
. 1-0V' I -HV>HV'9—" V-1V - g
x>y 1 =0V 10 6 <(H40 VIV) Uaum - L o qtrrrrtoo o SHrv | g
T=ADH09 H 1V 1V 5
I = AD 10 H46<IV UBUM 2
[=DVOVARD>AD 9+ TVTV §
XX N | =0V 0 <(H40 VIV) Usum L Ltrrootoo vreav §
Ataly N x HAOV IV TV OV—AD =)V I+ HV—=HV @
1 M MA <l 94y w=oviob<tiovwueum | |] . rrrorrooy | Vv
Z S Id AV 012€VS9L|012€EVPS9L
12491 4 uonerado wuo.wm z_m%ﬁm —— — puesedo | dluowouwr
sSeyy 9p0od uonerado

13.13

C

wPD70320/22

9L WWIAMY MV | = M UBUM .
X | X W\D guwli ATy -V 0 =M USUM €-2 MOTOTITIOO wurtooe
X | X 0N WA (Waw) — (wouw) 9-¢ wew Q T Tpow fM00000O0 [| wwiwow
X | X 0N wuiy A 83181 v-€ 80 0TTIT|{MO00000T wuisad
X | % 0N (waw) AB91891 v-2 wow Fo4 pow | MTOOTTO0O0 waw‘gad
> | X 0oln Bau A (wew) — (waw) v-2 wow 331 pow | MOOOTTIOO For‘wow
x| x 0N daa Ad91 891 H 800 894 [T |MIOOTITIOO Foua'au HOX
T WA MY - MY | =M Usum _ T Tuo s
R 0 :\11‘\ o gUUWIATY -V 0=MUsym €-¢ I%o_ﬂoooo uuraoe
RS 04N Wt A (W) — (wau) 9-¢ waw 1 QOpow {MO0000O0T | wwwow
XN on wwi A 321391 v-€ 891 TO00TT|[M0O00000T wuydad
x| % 0N AEuEv>uwuluwu V-2 wow F31 pow MTIOTO0000 waw' 33 ﬂ
Q
[— — SN —— Q
| X 01N Foa A (Waw) — (Wwaw) V-2 wow F91 pow | MOOTIO0000 dou‘wow m
o
- — 3
~O N 01ln Boua pBa13a0 K4 Joa Fox TT1 | MIOTO0000 Fau'dau HO m
T 91 WUl VMY MY L= M USUM - o | wwrooe s
X e 0N B L guwi VY -1V 0= M USUM £€-2 morooroo ! 5
NN 0N wwty (waw) — (wau) 9-¢ waur 0 0 Tpow M0O00000 T | wwrwow m
- S — { S — - m
RS 0N wuiyy/ 391391 v-€ 80 00TT11|M000000T wwrasL 3
N X 01N o) (wow) v dar—»doa N v-2 wow A3 pow | MTO000TO00 wow'dad
—]
RN 0N douay (wow) — (waw) v-2 wow Foa pow { MOOOO0OTO0O0 For'wow
X 01N daa /B39 Z g0 Hea T T |{MIOOO0TIO0O0 Foa'dod (INV
,,. S o 9l WWIV MV L=MUUM | i - ot | Ew:ﬂy . S
N oy Cguuwvivo=mueum| | €% _|Mmoototor) wmuw
A 0N ity (Wour) 9-¢ wow QO Opow |MITOTTIIL | wwiusw
N X 0N ity Had v-€ 24 000TT | MITOTTIIT wuwrgal
o e o - wowdoa
SRS daay (wow) v-¢ waw Hou pow | MOTQ0000T
NN Aoy, 8o 4 doa Bo4 TT MOTO000T LSH.L
718 012e¥sS9L|01CEVSIL
uonelado Spop | sokq | - - e puerado | ouowsuw
; : b Jo-ou 2poo uonesado

13.14

AD—AD _

[]

b
—

OTOTTITITI

XD *

pPD70320/22

H40 - 3kq s,

alq pig

alAq pug

C

s3ey

YWWION g (9 waw) -pwwiON 1a 91 (waw) 9-¥ oooOpow | TTTT |puwrgrwow
pwwioN #q 91691 -pwwi'ON g 91681 12 oooTT |TTITI pwwrgr3as
SWWI'ON Hq (gwaw) -gwwi'ON 19 (gwaw) 9 ¥ 00O0OPOMW [OTTTI guu'guaw
EWWION 31q g6as -cwWwWION ¥Hq gbas v 000TT|O0TTL guw'gdas
;o.oz 1q (91waw) -1O'ON 1A (9Lwaw) S € 000PW | TTTO T 9Twaw
JOON¥G 9L -TOON Wqgiba € 0001 T|TTTIO 1091824
JO°ON ¥g (gwaw) -1O'ON 14 (Bwaw) S ¢ ooopow | 0TT0 1O'gwow m
JO'ON ¥q 8621 -JO°ON ¥q gbas 3 000TT|{0TTO 1ogher | w
njojon 19 2 uwron ua 9wew) 9 ¥ 000Pow 1001 puwrg[uow w
n 01N w ”w mwvss_‘oz 1q 91681 v 00011 [T100T puwrgdax m
n 0N wm ”wm mm SWWION 4G (gwow) 9 v 000Pw | 000T guwrguaw a
alojo|n O 2 ewwron uqgbes v 000T1{000T guwrgha
o I R } Zio-toon uaeiwew §f 000pow 1000 ogren
njojoin 0 2 eZ1ooN uagibes ¢ 000111000 1091304
n 01N m ”w wwd.oz 14 (guow) S € 000Pow | 0000 T0'guew
nlolofn 0z i oon — ¢ 000T1[00001000 | TO8H1
d y nos
- o uonesado .ﬂuww_m wwﬁm_ «l‘m 4 mowgu:o_wﬂwﬂ“wom rsee pueiado ._qm__m

13.15

C

WPD70320/22

1-3I1a 1 IOTTTITIIT HIa
1—-40 1 TOOTTTITL A0 1L9S
0—YHIA 1 00TTTITLI a1a
0—AD 1 000TTTITI A0 14710
H40 - 8q isi, alkq pig alkq pug
_ I pwwi'ON 39 (9 Lwaw) 9-v waw g QOpow | TOTTI puwwrgyuau
L -pWWION U 91601 v | %1 00011 |10TT puwpg 3o
| I ~EWWI'ON Hq (gwauw) 9-% | wow Qo QPwW | 00T guuyguaw
L ~EWWION uq gbal i3 %21 000TL|00TT guiwir‘gsas
T L ~TO'ON Ha (91 waw) G-¢ | wow QQOPoW [TQT0 T0'gTwaw
1 ~7TO'ON UG 9ibai € 831 000TT|T10T0 1091824
- 1 ~TO'ON }q (gwaw) G-g | wow gQOopowW | 0010 70'guow w
1 ~71O°ON }iq gBau € 81 000110010 10804 113S m
BEEE 0 -pWwWiON Nq (9 waw) 9-v wow QQOpow | TTIOT pwwrgwow W
B 0 -yWwwI'ON ¥q 9168, v 1 000TT |TITO0T puw'g3a. m
0 -EWWION ¥q (gwaw) 9-y | wow gQOPOW | 0TOT guwr'guaw @
0 ~EWWION ¥q gbas v %20 000IL[0T0T guuy'gdos
0 -TO°ON }q (9} waw) G-g | wow Qo OPoW | TT00 T0'9Iwaw
0 -TO°ON¥q 916 € 821 000ITI |TT00 7091801
i 0 *71D°ON 1q (gwaw) G-¢ | wew QQOQPow | 0100 TO'gwaw
0 -7O'ON ¥q gbai € 81 000IT|0T00T000 | 10831 10
7S [d]A 1)y woniado spop | saufq 012€EVS9L|0T12EVSIL puesodo | onowsuu g“m
sdey ’ joou | jo-ou 3poo uonerado

13.16

uPD70320/22

C

SYIYS JO Joquinu :u

| — dwa} - dwd}
Zx(wow) - (waw) (waw) ~AD JO GSW

‘uopesado siy} jeadal ‘0 = dwa) ajiym ‘guiuwl - dwa}

waw 0 Q T POW | MOOO

00TTI

guwl‘waw

| — dwa} - dwa)
Zxbas - bBai1‘Bas - ADJO GS

‘uonesado siy} jeadal ‘g = dwa} ajiym ‘guw - dwa)

30 00TTIT MOOO

00TTI

guwi‘gau

| —dwa} - dwa)
ZX(waw) - (waw) (waw) - ADJ0 GSW
‘uone.ado sy} Jeadas ‘g = dwa) ajiym 19 + dwsa)

wow 0 O [pPow MIOO

1011

O waw

| —dwa} - dwa}
Zxbas - Bas‘Bas - ADJO SW
-‘uonesado sy} yeadas ‘g = dwa} 3jiym ‘19 + dway

31 00TTIT |{MIOO

I0T1T

10391

0 - AAD = (Waw) JO gSW USUM
L+ A'AD = (waw) JO GSIN USYM
ZX(waw) -(waw) ‘(waw) - AD JO ASW

waw 00 [pow fMO0O00

1011

[‘wow

0 - A AD=ba1}0 gSIN uaym
L - A AD = D510 gSN uaum
ZxBas - Bai‘Bas - AD JO ASW

4 00TITT |MO0O0O

1011

| @:EX

THS

suononsul YU

uonesado

So0pd
Jo ou

$914q
Jo ou

01zevrs9L|ot1CE

v¥49lL

3poo uonerado

puelado

JruowduwWw

dnosg|

13.17

C

pPD70320/22

SYIYS JO Jaquinu :u

“abueyo Jou Seop puelado Jo gS ‘| - dwa} - dws}
2+ (waw) - (waw) ‘(wew) JogsS1 - AD .
n ‘uoyesado siyj jeadsd ‘0 = dwe) ajiym ‘guiw - dwa} S € SR TTIPoW [M00000TT | guutiuau
“abueyd jou seop pueiado Jo gSN ‘| - dwa} - dwoy
Z2+b6es -Bas‘Basjogs] -0 R
n ‘uonesado siy) jeadal ‘0 = dwa) ajiym ‘guwl » dway € ruﬁ [TTTTIM00000TT | guudas
"abueyo jJou saop puelado Jo gS ‘| - dwd} - dwa} T
¢+ (wew) - (waw) ‘(waw) Jogs1 - AD .
n ‘uonesado siyj jeadad ‘g = dway ajiym 19 - dwa} vz wew LT IpewimIo0010TL 10weu
‘abueyd jou saop puesado jJo gSW ‘| — dwa} - dwa)
Z2+bas -Bas'barjogsl -1 A
n ‘uonjesado siy) 1eadal ‘g = dwey ajum 10 - dwsa} [4 B0 TTTTIT |[MIOOTLOTTI 10394
. abueyd jou saop puesado Jo gSN .
i 0 -A'Z- AEwEW . (waw) “(wouw) Jo mdmwz - AD v 2 wew T T Ipow MOOOTIOTT _EwE’i
n 0 A Bar s BorBel 0 HST o 2 | M TTLLT1|{M000TOTL| [VHHS
| - dwa} - dway o T N
¢+ (waw) - (waw) ‘(waw) jogs1 - AD .
L ‘uonesado siyj jeadad ‘0 = dwe) ajiym ‘guiw - dwa} s ¢ U LO TP M00000TT | Bumtiuow
| - dway -~ dwey
) Z2+6a1 ~bBas‘'Barjogs] - AD o
il ‘uoljesado siy) jeadas ‘0 = dwa) ajiym ‘guiw -~ dwa} € . B0 TOTTL I M00000LT | guurdss
| - dwa} - dwasy e T
2+ (wow) - (wow) ‘(waw) jogsT ~ AD .
"uonjesado siyj jeadal ‘g = dwa} djIym AD -~ dws o e memlotkw nioototnt 107w B
| - dwa} - dwa) [
2+ (wow) - (wow) ‘(waw) jo gs1 ~ AD 19
“uoyesado siy) jeadal ‘g = dua) ajiym 19~ dwa) ¢ 4 uw Lrortt nrooro i :u: ‘
0 - A:(waw) Jo gSW Buimojio} 1q = (waw) jo GSW
boeA .AEw.wxﬂwmhwvswﬁrﬁw__h_ww@wﬂvAﬁom._:ﬁ_o m_m_u p gz | wow [0 Tpow | MO00LIO0TT | [wow
0 - A:Bairjo gsw Buimolioy g = w%_ oasw| o
b~ ABoljo G Buwealio} iq = Bal Jo GBS ¢ M L0TiT | mooorort| rws ans
012€EVS9L[012¢€E¥VPS9L o o
uonerado S0P m%&n — B —{ puesado | dluowsuw
Jorou jo-ou 2p0d uonerado

suononuIsul Yy

13.18

wPD70320/22

C

SYIYS JO Jaquinu :u

|- dwa} - dwaj
wow) - (wow) Qo - (waw) jo g
2+ (wew) - (waw) (waw) Jo gS1 + AD .
‘uonesado siy} jeadal ‘0 = 19 AlIym ‘guuwnl » dwa} 5-¢€ Weu TOOPOU | MOO0O00O0TT) gumiuou
|- dway - dwsay
5 6 >mo - Ba1 Jo gs
¢ +bas -bBas‘Basjogst - AD 3 wuw*gad
‘uonjesado siy} jeadas ‘0 = 0 alIym ‘gwwil -~ dwaj € 1 T00TT M00000TT) 8um
|- dway - dwa)
AD - (waw) jo gSW
g+ (waw) - (waw) ‘(wow) jo 8ST - AD pog | wew Toopow |MTO0TOTT | T0wouw
‘uonesado siyj jeadas ‘0 = dwid} ajiym 10 - dwgy N
| - dway -~ dway
6 m>o P (waw) jo as
2+ bBa1 -Bei‘Baijogsl - AD 3 19301
‘uonjesado siy} jeadas ‘g = dwd} sjiym 19~ dway . ¢ st roott Bﬂr‘w‘o tort 10
0 - A:(waw) jo gSW Bumojio) §1q = (waw) jo gsn
L~ A:(waw) jo gSN Buimoljof 1g = Msoew jo gsw
"AQ - (o)) J0 8SW wow [QQPpow [MOOOTOTT | T[uwow
2+ (wow) - (wow) (Wwow)jogsy -AQ | e or ot |
0 - A:Ba1jo gSN Bumoio} 1iq = Bal Jo aS
L - A:Basjo gSN Bumolio) g = we jo asw
AD - baijogsw 3 ‘Bad
ZxBoi-Boi'Boijogs] -AD | Ni} °1 100 ﬁ T|M000 ~o Miﬁ 1 B
|- dwa} - dwa)
AD + 2 X (waw) - (waw) ‘(waw) JOgSW - AD wwiwaw
‘uoijesado siyj jeadal ‘g = dws) apym ‘gwwt - dway | s ,m oW 00 0pow MO0 o‘c ort \w\]
1- dway - dwa}
AD+Zxbas -Bas‘BasjogSN - AD g wwr'saa
‘uonjesado sty jeadal ‘g = dwsj ajym ‘guwl - dwsy | £ e 0 .c\o L1 M00000TT| sum
|- dway - dwa)
AD +Z X (waw) - (wow) (waw) Jo SN - AD ; 1o wow
‘uofjesado sy} jeades ‘g =dwajapym 19 - dwsy} | v Nt UM 0 0 0pom) M Mlo;o rort _‘,u
|- dwa} - dwa}
AQ +ZxBas - Bai‘Galjo @SN - AD z | %1 00011 |[MIOOTOTT | "10#u
‘uojjesedo siyjjeedas ‘o=dwajopym ‘19 -dwey | | " R IR S
0 - A:AD = (waw)jo aswW
b AAD = (wow) jo gSI b g | wow 0goopow |MOOOTOTT | [wow
. AD + 2 X (wow) - (wow) (wow)J0GSIN - AD| SO E R S
0 *AAD= MQ jo aS
I - A:AD =Daljo gsw 4 1'aa
AD+ZxbBas -Bai'BasjodgSW -AD | i N e f.w\‘_\\o n\wwﬁkﬁy Mmo00 B
uonerado SYo0p mu&n \oﬁwmmq m W $ o~ N m pueisado
’ jo-ou | jo-ou 2poo uonerado

Hod

Sluoweuw

SuUONONJISUI UONHEJOY

dnosd
uon
-anais

-ut

13.19

C

WPD70320/22

SYIYS J0 Jaquinu :u

| - dwa} - dwia)

Aoduy + g x (wow) - Bas

(wow) Jo GSN - AD AD - Aoduy

uofjetado sty) jeedal ‘g = 7D ajiym ‘guw - dwey

wawr Q0 popow |MO0000TT

guuwi‘waw

| - dwa} - dws)

Aodw + g x 6as - Bais

Ba1j0 @SN ~ ADAD - Aoduy

uojelado siyy jeadal ‘0 = 79 ajiym ‘guw » dwa)

1 0T0TI1({MO000O0TT

guwi‘gax
e

|- dway - dwsa)

Aodwy + 2 x (waw) -~ (waw)

(waw) Jo SN - AD AD - Aodwy

uonesado sy} jeadas ‘0 = AD dIYUM 10 - dwa)

weaw g T opow MIOOTIOTT

TO wauw

| —dwe} - dwa)

Aodwy + Z x Bas - Baus

Ba1jo gSW - AD AD - Aodug

uonesado siy} jeadas ‘0 = AD aliym 10 - dway

L 0TOTT MIOOIOTTL

10301

0 - AAD = (waw) jo gSW

L~ A:AD = (waw) Jo g

Aoduny + 2 x (waw) -~ (waw)
(wow) o gSW - AD AD - Aoduy

wew Qg T OpPoWw MOOOTOTIT

[‘waw

0 - A:AD=Dba1jogsSW

L -~ A:AD=0a1j0 asiy

Aoduwy + g x Bas - Bas

Bo1j0 gSW - AD AD - Aoduy

321 0TO0LT |[MOOOILIOTTI

1801

07104

suonon.isul ejejoy

¥

uornerado

sY00[0
Jo ou

$314q
Jo ‘ou

012€%PS9L|012€EVS9L

9poo uorjerado

puerado

dluowsuwt

uon
-anais
-ur

13.20

uPD70320/22

C

SYIYs JO Joquinu :u

| - dwa) - dwa)

Aoduny - (wew) jo gSW

Z - (waw) -~ (waw)

(wow) Jo gS7 - AD'AD ~ Aodun

nix uonesado sy 1eedas g = 10 SiuM ‘guil - dws G-¢ | waw [[Qopow [MOO00O0O0T T | guurwdw
| - dwe} ~ dwa}
Aodwy -~ Bas Jo S
Z-6a1 - bBas
Ba1jogs1 + ADAD - Aodwy 3 3
@s __uonesado siy) yeaday ‘g =10 dlium ‘gwwr — dws) £ P TTOTTL |M00000TT | guwEsd
| - dwa} ~ dws}
Aodwy - (waw) Jo gSW
Z - (waw) - (waw)
' (wow) Jo gST + ADAD ~ Aodwy .
nijx uoneiedo siy} 1eadal ‘0 = 10 BIyM 10~ dwa} v e wew [TQopow | MTOOTOTT 10 weuw W
1 - dwa} - dwa} %
Aodwy - Bais jo gS 5
Z-6a1 - Bas w
Ba1j0gS7 - ADAD - Aodun . S
B uofjesado siyj} jeadas ‘0 =10 aum 19 > dway ¢ B4 TTOTT (ML0OLOTL 1o m
0 - A:(Wwaw) jo gSW BuImoj|o} 11q = (Waw) Jo aSW
L - A:(waw) jo gSW Buimoljo) g = (waw) Jo gSW
Aodwy - (weuw) jJo gSW
2 - (wew) - (waw) .
x'x waw o g7 - AD AD - Aoduyy V-2 wow [TQpow iMOOOTOTT [‘waw
0 - A:ba1jo gS bumolioy g = 631 J0 aSW
L - A:Ba1jo g Buimojioy uq = Bai Jo aSIN
Aodwy - 621 Jo gS
Z2-6a1 -bBas 391 ™
> f 000T1O0TTI ['391 240y
1 A0108ST - AOAO - hodui ¢ Lrotrr Mmoo
Z 11AJAD|DY 012¢€¥S9L|0T12¢€E¥S9L
: uonerado .ﬂwo.wm um%ﬂ.ww pueiado | dluowsuw
s3ey 9pod uonerado

13.21

C

anjeA dod + JS—dS' v +dS—dSs

(2 +dS'e +dS)—Sd anjea dod
~ (dS'1 +dS)—dd £ orotroort
V+dS—=dS
(2 +dS‘'€ +dS)—Sd
e (dS' T +dS)—0d ! rrotroort:
Sn[en dod+ 35 —dS & +dS—d$S "
(dS'I +dS)—0d € 010000TT | 2neado
g +dS=ds 1 11000011 L9y

(dS'1 +dS)—0d
(zendwaw) 3 J7(Z +gendwduw) g g
¥ —dS—dS Zendwaw
0d—(¥ —dS'€ ~dS)'Sd—(2 ~dS' [—-dS) Ve mewTropuw TTITTTITT
1P¥so-)dBes G
¥ —dS—dS 201d uey
0d—(¥ —dS'€ ~dS)'Sd—(2 ~dS'L ~dS) s orortoot

(oTndwaw) =34

2 —dS—dSDd—(Z —dS‘'T —dS) vz waw g popow | TTTITTLIT | 9rnduwsw

SuUOONYSU |ORUOD BuURNOIGNS

) Z2-dS—ds 3 -
N L9910 Dd (2 —dS' T —dS z 4 QTOTT | LTLTTTITL]| 9raddos

dstip+3d—0d 4 1oou .
i 2 -dS—dS'0d—(Z ~dS'L ~dS) ¢ 000T0T LI d0ud e I'vo
a4 m
AP uonesado Y0P | sa14q greevs9L|0TzErS9L puesado | oruowouw |4
s3ey ’ Jo-ou | jo-ou 3poo uonerado sl

WPD70320/22

13.22

WPD70320/22

(eendwau) 55 g wow ow 111 | ggndwaw
(7 +zea3dwowm) G g V-2 10LP ITTIT1I €
135jj0=0d o
805554 S OTOTOTILT | [Pqe[-1% m
(91a3dwaw) g y-g | wow gorpow | TTTTLTLT | 9rudwew 2
o
9111d3a1-0d 14 B0 0O0TTT|TTTTTLTITLT | 9rndiea <
..mo.
gdsip X2 +0d—0d 4 TT0T1O0TTT |98 Hoys a
. dsip+0d—0d £ T00TOTTT |[oqe Jeau ud
N \wEEm yoe1g jo asodsig 1 100t100TT | 4S0dSsId
T swra g yorrg MoN aaedesy v 000T100T T |gwurgruuwt| JYVddd
yoels ay) wouy suaysidaa dog 1 1I0000T1T1O0 i
¢ +dS—dS
10T1T0O0T MSd
i) (dS'1 +dS)—MSd ! "
- . ‘ . ¢ +dS—dS Faas 3auas =
1SA'0SA’'SS : #ais (dS T 1dS) Hous 1 111845000 g
R 2 +dS—dS S04 11010 91821 3
(dS' T +dS)—9130 ! E
T o ¢ +dS—dS wdw gQOopow | TTTTO00O0T gruew 10d | &
(dS'1 +dS)—>(91wam) ve e
uoisuedxa ubls | = S UBUM "g ~dS—dS ¢z 0SO0TO0TTIO wuy 3
wwi—(g ~dS'1 ~dS) a
yoels ay) uo suaistdaa ysng 1 00000T1TO | W
- 2
¢-ds—ds 1 00111001 | MSd 2
MSd—(2—dS'1-dS) . |
¢ —dS—dS 1 01 183s000 ous
] 8015 (7 —dS'1 —dS)
¢ -ds—ds 1 81 0T0T0 | 913
91891-(2 —dS'1 —dS)
Z-dS—dS wow g pTpow | [TTTTTITTL| 9rwow HsNd
- (91wow) »(g ~dS' T —dS) ve 4]
| ¥S9L|012EVS9L
d | AAD (DY uoneado Y0P mB.B otree puerado | SlUOWIUW
@eu : Jjo-ou | jo-ou 9pod uonesado

13.23

C

uPD70320/22

"02€0£/22€0.Ad" 8y} 4o uononssu pappe AjmaN,

- }q 4981681 |e10adg _mpmr“_c * *

) | = 1q JoysIBal [e1oads i g |[0O0TTIOOT | TTITTO0000]| gy wToLd

B " 0=MO It “ 1100 " ZMod
" MRS H " 0100 “ zNda

o ; 0FRO P (=2 . 1000 . aZNEa
N . 0+MD %:\uawuuww_ “ 00000111 " ANZNEA
“ 0=ZA(AAS) It “ I111 " 1og

" 1=ZA(AAS) " orTr1 “ it

" 0=AAS J! “ 1011 “ R

" I=AAS ! “ 0011 u 114

“ 0=d ¥ u 1101 “ odd

] " I=dn u 0101 " q4dg
BB “ 0=S It “ 1001 “ dq
1T " =S¥ “ 0001 " Nd

- " 0=ZAKD ¥ “ 1110 “ HA
“ T=ZAAD I “ 0110 “ HNE

T T L 0=27 1 “ 1010 “ N
T - " o I=2Z 3 v 0010 " !,‘mm
e N . 0=A0 i . 1100 " o Mmmj
P I=A0 It " 0100 ! fuM

e B “ 0=A ¥ " 1000 " ANY
e ~gdsip 0.4 Dd+0d - T=AJ 2 h 0000TTTO0 |Iqe(woys Ad
B 1 T o : i -
2] [a wlor Rl I FRRBAREALE ELLALALLCH R P
sgey apod uorerado

SUONONJISUI YOURIQ [BUOIHIPUOD

13.24

uPD70320/22

'02£0./22£0.,ad" aui Joj uononuisul pappe AjMaN,

(02'12)—~0d"(2g'€e)—Sd

0—MYd' 03I

9 —~dS—»dS'0d—(9~ds s —dS)

‘Sd—(¥ —dS'€ ~dS)'MSd—(2 —dS'1 —dS)

3 e
B 91851 = (7 + Zeuiow) 10 9| Boi< (zEwow) USUM Ve b1 pow | 0 T 000 T L0 |ggwourgrdds | ANINHO
pa1a1dioo uaaq Sey N1dO 8us Ul 3ing J9]|0Jju00
1dn1101U1 U} O} BUNNOJ 801AISS JdNIIBIUI JBY) SBJBDIPUI ¢ [01001001 11110000 * AN
MSd 21§ >MSdDd 2Ae§—0d z |1000T00T|TT110000 * 1ELTY
§FdS S (¥ TdS' S +dS)~MSd) E
La]
‘(2 +dS'€ +dS)—~Sd'(dS' 1 +dS)—0d ! rrrioott L1y 2
(91°21)—>0d (81'61)—Sd dnw
0 —-MY¥9' 04l 2
9 ~dS—-dS'0d—(9 —dS‘'S —dS) m
‘Sd—(¥ ~dS '€ ~dS)'MSd—(2 ~dS' T —-dS) =
L = A UBUM 1 ort1T1o0o0TTI AMYd m
QU= U (pXUT+FXU)=Dd (2 +HPXUE+PXU)—>Sd
0 —NUE' 0 —dl (g +)
9 ~dS—dS§'Dd—(9 ~dS'S ~dS) L00TT "
‘Sd—(¥ ~dS'€ —dS)'MSd—(2 ~dS'T ~dS) ¢ rot 0 g
(Z1e)—~0d (F1°61)—>Sd
0 —)Y4d' 04l
9 —dS—dSOd—(9 -dS'§ —dS)
. . 110011 € Jyyd
Sd—(¥ —dS' € —dS)'MSd—(2 ~dS' 1 ~dS) ! 00
S 01Z2EVPS9L|0T2EVSI9L dnosa
> uonesado sa1Aq puriado | duowsauw
Jo-ou apod uonerado

13.25

C

‘jdnusaut

ue sejeiauab Inqg ‘02£0./22€0.0dM 8y} uo ajndaxa jou saoq g,
02£0./22£0.0d" 8y} 10§ UoRINSUI PBPPE AIMEN :Z,

'SS “Sd 180 “0SA ‘1.

xyoid aplIano Juswbag 1 0T 1315100 *
uonjesad(y oN 1 0000T100T dON
(wauw) — snq ejep v-¢ waw A AXPoW | X TTO00T 10 | wawdo-dy £x
uonesadp oN 4 ZZZAAARLTL |[XT100T1TO do-dj 20dd
(waw) — snq ejep v-¢ wow A X Apow | XXX T 10T | waudo-dy £* 9
uonesad oN 4 ZZZAXAATT [XXXTITIOTITI do-dy 10d4 W
xioad y20] sng 1 0000TTITI ¥001Snd w.
1—-31 I TTOTITITII EW
0—-dI T OIOTITITITITI 1a m.
ud T0d 0 sBuyjdwes jo ‘ON :u tem pue [[od 1 ITT101100T T10d
daig nNdO [4 OITITIOOT |TITITITIO0000 N*mo._.m
3eH NdD 1 0O0TIOTITITITI LTVH
uonerado ww“..wm _m%ﬁm_ oreeEy MuMOhco_”uEHnM frese puelado | dluowauw

wPD70320/22

13.26

N E C uPD70320/322

EXPLANATION OF
INSTRUCTIONS

141

pPD70320/322
CONTENTS
Section Page Section Page
Instruction Set Instruction Set (cont)
Data Transfer 14.6 Subroutine Control 14.144
Repeat Prefixes 14.16 Stack Operation
Primitive Block Transfer 14.18 Branchc......
Bit Field Manipulation 14.23 Conditional Branch
Input/Outputoooill. 14.27 Breakooooiiiiiiii
Primitive Input/Output 14.30 CPU Control
Addition/Subtraction 14.31 Segment Override Prefix
BCD Arithmetic 14.44
Increment/Decrement 14.49
S 455 Appendi |
BCD Adjust 14.63 A pPD70320/70322 Instruction Index 14.181
Data Conversion 14.65
Comparison 14.67 Tables
Complement Operation ... 14.70 1 Operand TYpes 14.3
Logical Operation 14.72 2 Instruction Words 14.4
Bit Manipulation 14.83 3 Operation Description 14.4
Shift ... 14.102 4 Flag Operations 14.5
Rotatecooiiiiiiil. 14.120 5 Memory Addressing 14.5
6 Selection of 8- and 16-Bit Registers 14.5
7 Selection of 8-Bit and Segment
Registersccooiiiiiiiii . 14.5

142

NEC

uPD70320/322
e st oo _Toblet.___Oparand Tpes
instruction set. identifier Description

reg 8- or 16-bit general-purpose register

reg8 8-bit general-purpose register

reg16 16-bit general-purpose register

mem 8- or 16-bit memory location

mem8 8-bit memory location

mem16 16-bit memory location

mem32 32-bit memory location

dmem 16-bit direct memory address

imm 8- or 16-bit immediate data

imm3 3-bit immediate data

imm4 4-bit immediate data

imm8 8-bit immediate data

imm16 16-bit immediate data

ace AW or AL accumulator

sreg Segment register

src-table Name of 256-byte translation table

src-block Name of source block addressed by IX register

dst-block Name of destination block addressed by
1Y register

near-proc Procedure within the current program segment

far-proc Procedure located in another program segment

near-label Label in current program segment

short-label Labe! within range of —128 or +127 bytes
from end of instruction

far-label Label in another program segment

regptr16 16-bit general-purpose register containing an
offset within the current program segment

memptr16 16-bit memory address containing an offset
within the current program segment

memptr32 32-bit memory address containing the offsed
and segment data of another program segment

pop-value Number of bytes of the stack to be discarded
(0-64K, usually even addresses)

fp-op Immediate value to identify instruction code
of the external floating point processor chip

R Register set (AW, BW, CW, DW, SP, BP,
IX, 1Y)

DS1-spec (1) DSy
(2) Segment of group name assumed to DS

Seg-spec (1) Any name or segment register

(2) Segment or group name assumed to
segment register

g

Optional, may be omitted

143

NEC

uPD70320/322
Table 2. Instruction Words Table 3 Operation Description
Identifier Description Identifier Description
w Word/Byte specification bit (1 = word, AW Accumulator (16 bits)

0= by'te) - — AH Accumulator (high byte)
reg %3 g_-?;tgeneral register specification bit AL Accumulator (low byte)
mod,mem Memory addressing specification bits 8w BW register (16 bits)

(mod = 00-10, mem = 000-111) cw CW register (16 bits)
(disp-low) Optional 16-bit displacement lower byte CL CL register (low byte)
(disp-high) Optional 16-bit displacement higher byte ow DW register (16 bits)
disp-low 16-bit displacement lower byte for PC relative N Stack pointer (16 bits)

— addit'ion. - PC Program counter (16 bits)
disp-high :ga!t):\t/ed :gé?{:i::‘nem higher byte for P PSW Program status word (16 bits)
imm3 3-bit immediate data IX Index register (source) (16 bits)
imma 4-bit immediate data PS Program segment register (16 bits)
imm8 8-bit immediate data DS1 Data segment 1 register (16 bits)
imm16-low 16-bit immediate data lower byte Dso Data segment 0 register (16 bits)
imm16-high 16-bit immediate data higher byte 8§ Stack segment register (16 bits)
addr-low 16-bit direct address lower byte AC Awiiliary camy flag
addr-high 16-bit direct address higher byte oY Cany flag
sreg Segment register specification bit Parity flag
N Sign-e.xtension specification bit (1 = sign Sign flag

exiension, § = no sign exiension) z Zero fiag
offset-low Low byte of 16-bit offset data loaded to PC DIR Direction flag
offset-high High byte of 16-bit offset data loaded to PC 13 Interrupt enable flag
seg-low Low byte of 16-bit segment data loaded v Overflow flag
s BRK Break flag
pop-value-low kg;g‘:(";y‘tglg: gta;gk":zigz Z‘i’:cc;?::d () Values in parentheses are memory contents
pop-value-high High byte of 16-bit data which specifies disp Displacement (8 or 16 bits)
number of bytes of stack to be discarded temp Temporary register (8, 16, or 32 bits)
disp8 8-bit displacement added to PC seg Immediate segment data (16 bits)
X Operation codes *or extemal floating point offset Immediate offset data (16 bits)
m processor chip -— Transfer direction
y244 + Addition
- Subtraction
X Multiplication
= Division
% Modulo
AND Logical and
OR Logical or
XOR Exclusive or
XXH 2-digit Hexadecimal data
XXXXH 4-digit Hexadecimal data

144

NEC

uPD70320/322
Table 4. Flag Operations Table 6. Selection of 8- and 16-Bit Registers
identitier Description reg w=0 w=1
(bfank) No change 000 AL AW
0 Cleared to 0 001 CL cw
1 Setto1 010 DL ow
X Set or cleared according to the result 011 BL BW
U Undefined 100 AH SP
R Value saved earlier is restored 101 CH BP
110 DH X
Table 5. Memory Addressing 1M BH Iy
mod
mom 00 o1 10 Table?7. Selection of Segment Registers
000 BW + IX BW + IX + disp8 BW + IX + disp16 sreg
001 BW + IY BW + IY + disp8 BW + IY + disp16 00 DS1
010 BP + IX BP + IX + disp8 BP + IX + disp16 01 PS
011 BP + 1Y BP + IY + disp8 BP + IY + disp16 10 ss
100 IX IX + disp8 IX + disp16
101 Y 1Y + disp8 IY + disp16 1 0s0
110 Direct Address BP + disp8 BP + disp16
mn BW BW + disp8 BW + disp16

4.5

NEC

uPD70320/322
DATA TRANSFER MOV mem,reg
MOV reg,reg Move register to memory
Move register to register 7 : 0
T T T T T
7 0 1 0 0" 0" 170 0" w]
|1'o'o'o'1'o'1[w1
T
I mod I ' reg I x memI l
T T T T T T T
1 1 reg reg
[| | (disp-low) L]
reg < reg T T ‘h' 1
Transfers the contents of the 8- or 16-bit register spec- | (disp-high)

ified by the second operand to the 8- or 16-bit register
specified by the first operand.

Bytes: 2

Transfers: None

Flag operation: None

Example:
MOV
MOV

BP,SP
AL,CH

14.6

(mem) «— reg

Transfers the contents of the 8- or 16-bit register spec-
ified by the second operand to the 8- or 16-bit memory
location specified by the first operand.

Bytes: 2/3/4
Transfers: 1
Flag operation: None
Example:
MOV [BP](IX], AW
MOV BYTE_VAR,BL

NEC

uPD70320/322
MOV reg,mem MOV mem,imm
Memory to register Immediate data to memory
7 0 7 0
1 0 o o 1 o 1 o[0T T 0 0 11w
T T T T T T T T
IL mod reg mem l 1 mod ‘ 0 0 0 mem J]
i T T T T T —T T T T
[(disp-low) l (disp-low)
T T T 1. T T T T T T T
{ (disp-high) J (disp-high)

reg «— (mem)

Transfers the 8- or 16-bit memory contents specified by
the second operand to the 8- or 16-bit register specified
by the first operand.

Bytes: 2/3/4
Transfers: 1
Flag operation: None
Example:
MOV AW,[BW][IY]
MOV CL,BYTE_VAR

T T T T
imm8- or imm16-low

T T T
imm16-high

(mem) «— imm

Transfers the 8- or 16-bitimmediate data specified by the
second operand to the 8- or 16-bit memory location
addressed by the first operand.

Bytes: 3/4/5/6
Transfers: 1
Flag operation: None
Example:
MOV BYTE PTR [BP][IX],0
MOV WORD PTR [BW],12
MOV [BP][IX],5 ;Note: assembler assumes
;WORD PTR as default.
MOV BYTE_VAR,123
MOV WORD_VAR,1000H

14.7

uPD70320/322

MOV reg,imm

Immediate data to register

MOV acc,dmem

Memory to accumulator

7 3 2 0 7 0
{ 1 I 0 I 1 l 1 y w r I regl] l 1 , 0 ‘ 1 I 0 I 0 ' 0 T 0 I w |
l ! l imrlna- or |immﬂs[-low ! l l ' addlr-low l I ‘
| " imm16-high ‘ 1 [addr-high | |

reg < imm

Transfers the 8- or 16-bitimmediate data specified by the
second operand to the 8- or 16-bit register specified by
the first operand.

Bytes: 2/3

Transfers: None

Flag operation: None
Example: MOV BP,8000H

14.8

When W = 0 AL < (dmem)
When W =1 AH « (dmem + 1), AL « (dmem)

Transfers the memory contents addressed by the second
operand to the accumulator (AL or AW) specified by the
first operand.

Bytes: 3
Transfers: 1
Flag operation: None
Example:

MOV
MoV

AWWORD_VAR
ALBYTE_VAR

NEC

wPD70320/322
MOV dmem,acc MOV sreg,reg16
Accumulator to memory Register to segment register
7 0 7 0
T T T T T T T T
l 1 0 1 0 0 0 1 w ' [1 0 0 0 1 1 1 0]
T T T T T T T T T T T T
[addr-low I l 1 1 0 sreg reg l
L [add;-high !] ' | sreg < reg16 sreg: SS,DSQ.DS1

When W = 0, (dmem) «— AL
When W = 1, (dmem + 1) «— AH, (dmem) < AL

Transfers the contents of the accumulator (AL or AW)
specified by the second operand to the 8- or 16-bit mem-
ory location addressed by the first operand.

Bytes: 3

Transfers: 1

Flag operation: None
Example:

MOV WORD_VARAW
MOV BYTE_VARAL

Transfers the contents of the 16-bit register specified by
the second operand to the segment register (except PS)
specified by the first operand. External interrupts (NMI,
INT) or a single-step break is not accepted between this
instruction and the next.

Bytes: 2

Transfers: None

Flag operation: None
Example: MOV SS,AW

149

pPD70320/322

MOV sreg,mem16
Memory to segment register

MOV reg16,sreg
Segment register to register

7
T T T T I T T
11 0 0 0" 1" 174

7
[1roTo'o‘1’1[o‘ow
|1T17

T T T T T T - T T T T T
I mod 0 sreg mem l 0 sreg reg 1

T T T T T
I (disp-low)] reg 16 «— sreg

: ; . - . Transfers the contents of the segment register specified
I (disp-high) J by the second operand to the 16-bit register specified

sreg «—— (mem16) sreg: SS,0S,DS

Transfers the 16-bit memory contents addressed by the
second operand to the segment register (except PS)
specified by the first operand. However, external inter-
rupts (NMI, INT) or a single-step break is not accepted
during the period between this instruction and the next.

Bytes: 2/3/4
Transfers: 1
Flag operation: None
Example:
MoV DS0,[BW][IX]
MOV SS,WORD_VAR

1410

by the first operand.
Bytes: 2
Transfers: None

Flag operation: None

Example: MOV AW,DS1

NEC

uPD70320/322

MOV mem16,sreg MOV DS0,reg16,mem32

Segment register to memory 32-bit memory to 16-bit register and DSO

7 0 7 0

T T T T T T T

1 0 0 0 1 100[[1'1’0’0‘0r1'0r1|
T T T T T T T T T T

[mod 0 sreg mem T l mod i reg mem
T T T T T T

[(disp-low) | [@isp-lowy |
T T 1 T T T T T T

[(disp-high) | (disp-high) |

(mem16) «— sreg

Transfers the contents of the segment register specified
by the second operand to the 16-bit memory location
addressed by the first operand.

Bytes: 2/3/4
Transfers: 1
Flag operation: None
Example:

MOV [IX]PS

1411

reg 16 «— (mem32)
DSy « (mem32 + 2)

Transfers the lower 16 bits (offset word of a 32-bit pointer
variable) addressed by the third operand to the 16-bit
register specified by the second operand, and the higher
16 bits (segment word) to the DS segment register.

Bytes: 2/3/4

Transfers: 2

Flag operation: None

Example: MOV DS0,BW,DWORD_VAR

pPD70320/322
MOV DS1,reg16,mem32 MOV AH,PSW
32-bit memory to 16-bit register and DS, PSW to AH
7 0 7 0

T ’ ‘ T " T T T T
1 170 0 0o 1 o0 o | [+ o o T T T T T]
[mod | " reg | ’ Mmem' J AH «— S,ZX,ACXPX,CY

, , . | Transfers flags' S, Z, AC, P, and CY of PSW to the AH
[(disp-low) ' j register. Bits 5, 3, and 1 are undefined.

- . : . . Bytes: 1

[(disp-high)] Transfers: None
reg16 «— (mem32) Flag operation: None
DS1 «— (mem32 +2) Example: MOV AH,PSW

Transfers the lower 16 bits (offset word of a 32-bit pointer
variable) addressed by the third operand to the 16-bit
register specified by the second operand, and the higher
16 bits (segment word) to the DS, segment register.
Bytes: 2/3/4

Transfers: 2

None

DS1,lY,DWORD_VAR

Flag operation:

Example: MOV

14.12

NEC

uPD70320/322

MOV PSW,AH
AH to PSW

LDEA reg16, mem16
Load effective address to register

7 0
L1'0‘o"r1‘1‘1!1\o}

S,ZX,ACX,PX,CY «— AH

Transfers bits 7, 6, 4, 2, 0 of the AH register to flags S,
Z, AC, P, and CY of PSW.

Bytes: 1
Transfers: None

Flag operation:

V] s]z][A]P]cY
] X X X { X L X
Example: MOV PSW,AH

(dis;;-low) '

T T T
(disp-high)

reg16 «— mem16

Loads the effective address (offset) generated by the
second operand to the 16-bit general-purpose register
specified by the first operand. Used to set starting
address values to the registers that automatically specify
the operand for TRANS or block instructions.

Bytes: 2/3/4

Transfers: None
None

BW,TABLE[IX]

Flag operation:
Example: LDEA

14.13

upPD70320/322
TRANS no operand XCH reg,reg
;:‘A\:g; r::g:::an d Exchange register with register
Translate byte I:IOIOIOIOI1F1I:V—I
7 0
11 0 e T T T] [7 e s]
AL — (BW + AL) reg « reg

Transfers to the AL register one byte specified by the BW
and AL registers from the 256-byte conversion table. This
time, the BW register specifies the starting (base)
address of the table, while the AL register specifies the
offset value within 256 bytes of the starting address.

Bytes: 1
Transfers: 1

Flag operation: None
Example:
TRANS TABLE
TRANS
TRANSB

1414

Exchanges the contents of the 8- or 16-bit register spec-
ified by the first operand with the contents of the 8- or
16-bit register specified by the second operand.

Bytes: 2

Transfers: None
Flag operation: None
Example:

XCH
XCH

cwBsw
AH,AL

NEC

uPD70320/322

XCH mem,reg XCH AW,reg16

XCH reg,mem XCH reg16,AW

Exchange memory with register Exchange accumulator with register

7 0 7 0
T T T T T T T T T T T T T T

L 1 0 0 0 0 1 1 w J [1 0 0 1 0 reg

l mod " reg ’ "mem’ l AW ~ reg16
Exchanges the contents of the accumulator (AW only)

(! (dis[L-low) ' T ' ! specified by the first operand with the contents of the
16-bit register specified by the second operand.

T T T T T T

] (disp-high) | Bytes 1
Transfers: None

mem) « re

() 9 Flag operation: None

Exchanges the 8- or 16-bit memory contents addressed :

by the first operand with the contents of the 8- or 16-bit Exigﬂ'iw oW

register specified by the second operand. ’

gister sp y P XCH CWAW

Bytes: 2/3/4
Transfers: 2

Flag operation: None

Example:
XCH WORD_VAR,CW
XCH AL TABLE[BW]

\SLE BV

1415

uPD70320/322
REPEAT PREFIXES REPNC (no operand)
REPC (no operand) Repeat while no carry
Repeat while carry 7 0
T T T T T T T
7 0 ‘ 0 1 1 0 0 1 0 07
011‘1'0101’0117
While CW#0, the block comparison instruction

While CW 0, the block comparison instruction
(CMPBK or CMPM) placed in the following byte is exe-
cuted and CW is decremented (—1). If the result of the
block comparison instruction is CY 5 1, the instruction
terminates. CW is checked against the condition imme-
diately before the execution of the block comparison
instruction. Therefore, if CW = 0 the first time the REPC
instruction is executed, the program will proceed imme-
diately to the instruction following the block comparison
instruction and the block comparison instruction will not
be executed atall. The contents of CY immediately before
the first execution of the REPC instruction are “don't
care.”

Bytes: 1

Transfers: None

Flag operation: None

Example: REPC CMPBKW

14.16

(CMPBK or CMPM) placed in the following byte is exe-
cuted and CW is decremented (—1). If the result of the
comparison instruction is CY = 1, the instruction termi-
nates. CW is checked against.the condition immediately
tefore the execution of the block comparison instruction.
Therefore, if CW = 0 the first time the REPNC instruction
is executed, the program will proceed immediately to the
instruction following the block comparison instruction
and the block comparison instruction will not be exe-
cuted at all. The contents of CY immediately before the
first execution of the REPNC instruction are “don’t care”
Bytes: 1
Transfers: None
Flag operation: None

Example: REPNC CMPMB

NEC

uPD70320/322

REP/REPE/REPZ
Repeat/repeat while equal/repeat while zero
REP (no operand)
REPE/REPZ (no operand)
7 0
i1!1‘1"110‘071‘1j

While CW # 0, the following instruction is executed and
CW is decremented (—1).

REP is used with MOVBK, LDM, STM, OUTM, or INM
instructions and performs repeat operations while
CW # 0. The Z flag is disregarded.

REPZ or REPE is used with the CMPBK or CMPM
instruction. A program will exit the loop if the comparison
result by each block instruction is Z# 1 or when CW
becomes 0.

CW is checked against the condition immediately before
the execution of REP/REPE/REPZ instruction. Conse-
quently, if CW=0 the first time the REP/REPE/REPZ
instruction is executed, the program will move to the
instruction following the block instruction and the block
instruction will not be executed at all.

A zero fiag check is performed against the resuit of ihe
block instruction. The contents immediately before the
first execution of the REPE/REPZ instruction are
“don’t care.”

Bytes: 1

Transfers: None

Flag operation: None

Example:
REP MOVBKW
REPZ CMPBKW
REPE CMPMB

REPNE/REPNZ (no operand)
Repeat while not equal/repeat while not zero
7 0

T T i T T T
1 1 1 1 0 0 1 0

While CW 0, the block comparison instruction
(CMPBK, CMPM) is executed and CW is decremented
(—1). If the result of the block comparison instruction is
Z 5 0 or CW becomes 0, the instruction terminates. CW
is checked against the condition immediately before the
execution of the block comparison instruction. Conse-
quently, if CW =0 the first time the REPNE/REPNZ
instruction is executed, the program will proceed imme-
diately to the instruction following the block comparison
instruction, and the block comparison instruction will not
be executed at all.

A zero flag check is performed to test the result of the
block comparison instruction. The contents of Z imme-
diately before the first execution of the REPNE/ REPNZ
instruction are “don’t care.”

Bytes: 1
Transfers: None
Flag operation: None

Example:
REPNE CMPMB
REPNZ CMPBKW

1417

wPD70320/322

NEC

PRIMITIVE BLOCK TRANSFER
MOVBK/MOVBKB/MOVBKW

(repeat) MOVBK [DS1-spec:]dst-block,[Seg-spec:]
src-block

(repeat) MOVBKB (no operand)

(repeat) MOVBKW (no operand)

Move block/move block byte/move block word
7

T T T T T T T
1 0 1 0 0 1 0

w]

When W =0, (IY) « (X)
DIR=0: IX+—IX+1,IY —IY+1
DIR=1: IXIX—=11Y «IY—1

When W =1, (IY +1,1Y) — (X + 1, IX)
DIR=0: IX—IX+2IY —IY+2
DIR=1: IXIX=2IY —IY—2

Transfers the block addressed by the IX register to the
block addressed by the IY register by repeating the data
word byte. In order to transfer the next byte/word, the
IX or IY register is automatically incremented (+1 or +2)
or decremented (—1 or —2) each time a byte/word is
transferred. The direction of the block is determined by
the direction flag (DIR).

Byte or word specification is made by the attribute of the
operand when the MOVBK is used. If the MOVBKB or
MOVBKW is used, the type is specified by the instruction.

The destination block must always be located within
the segment specified by the DS, segment register. The
default segment for the source block register is DSp, and
a segment override is permitted. The source block may
be located in a segment specified by any of the segment
registers.

Bytes: 1

14.18

Transfers:
Repeat: 2/rep
Single operation: 2

Flag operation: None

Examples:
1. Mov AW,SEG SRC_BLOCK
;point to source
MOV DS0,AW
;segment and offset
MOV IX,OFFSET SRC_BLOCK
MOV AW,SEG DST_BLOCK
;point to destination
MOV DS1,AW
MOV IY,OFFSET DST_BLOCK
MOV Cw22
;set count

REP MOVBKW
;move 22 words

2. MoV IX,SP
isource will be stack
MoV DS1,lY,DST_DWPTR
Jfetch pointer to destination
MOV CWS5
,set count

REP MOVBK DS1:DST_BLOCK,SS:[IX]
: :move from stack (override prefix)

;to destination
DATAO SEGMENT AT 0
SRC_BLOCK DW 22 DUP (?)
SRC_DWPTR DD SRC_BLOCK
DST_DWPTR DD DST_BLOCK
DATAO ENDS
DATA1 SEGMENT AT 1000H
DST_BLOCK DW 22 DUP (?)
DATA1 ENDS

NEC

uPD70320/322
CMPBK/CMPBKB/CMPBKW
gg:ial) CMPBK [Seg-spec:]src-block,[DS1-spec:]dst- Transfers:
(repeat) CMPBKB (no operand) Q;p?:t; erati o1n/‘ reg
(repeat) CMPBKW (no operand) ge op :
Compare block/compare block byte/compare block Flag operation
word
, o V.S Z AC | P cY
‘ X X X X X | X
I o 1 o 0 1 1 WJ :
e Example:
When W=0: (IX) = (1Y) MOV DSO,X,SRC_DWPTR
8:2:0: IX «— IX+1, 1Y «— IY+1 ;point to areas to compare
=10 X = X1, 1Y = Y1 MOV DS1)Y,DST_DWPTR
When W=1: (IX+1, 1X) — (Y+1, 1Y) MOV CWA6
DIR=0: IX «— IX+2, IY < IY+2 " .set count
DIR=1: IX «— IX—2,1Y «— IY—2 REPNC CMPBkB
Repeatedly compares the block addressed by the IY reg- ;compare 16 pairs of bytes
ister with the block addressed by the IX register, byte by BCWZ GREATER
byte or word by word. The result of the comparison is ;if CW = 0, then SRC = DST
LESS: ———

shown by the flag. In order to process the next byte or
word, IX and IY are automatically incremented (+1 or +2)
or decremented (—1 or —2) each time one byte or word
is processed. The direction of the block is determined
by the direction flag (DIR).

The byte or word specification is made by the attribute
of the operand when CMPBK is used. If CMPBKB or
CMPBKW is used, it is specified directly to be the byte
or word type.

The destination block must always be located within the
segment specified by the DSy register. The default seg-
ment register for the source block is DSg and a segment
override prefix is permitted.

Bytes: 1

14.19

pPD70320/322

NEC

CMPM/CMPMB/CMPMW

(repeat) CMPM [DS1-spec:]dst-block
(repeat) CMPMB (no operand)
(repeat) CMPMW (no operand)

Compare multiple/compare multiple byte/compare
multiple word

7 0
T T T T T T T
(1 0 1 0 1 1 1 Vr]

When W=0: (AL) — (IY)

DIR=0: IY «—IY+1,

DIR=1:1Y «— 1Y —1

When W=1: AW — (IY+1, 1Y)

DIR=0: IY «—IY+2

DIR=1: IY «—1Y-2

Repeatedly compares the block addressed by the IY with
the accumulator (AL or AW). To process the next byte or
word, the IY is automatically incremented (+1 or +2) or
decremented (—1 or —2) each time one byte or word is
processed. The direction of the block is determined by
the direction flag (DIR). Byte or word specification is
made by the attribute of the operand when CMPM is
used. If CMPMB or CMPMW is used, it is specified
directly by the instruction.

The destination block must always be located within the
segment specified by the DS, segment register.

Bytes: 1

14.20

Transfers:
Repeat: 1/rep
Single operation: 1

Flag operation

\ S AC CcY

N
o

X X X X X X

Example:
MOV DS1,lY,DST_DWPTR
;point to destination block
MoV ALA
MoV CW,20
;search for first ‘A’
REPNZ CMPMB

NEC

uPD70320/322

LDM/LDMB/LDMW

(repeat) LDM [Seg-spec:]src-block
(repeat) LDMB (no operand)
(repeat) LDMW (no operand)

Load multiple/load multiple byte/load multiple word

When W=0: AL « (IX)
DIR=0: X « IX+1
DIR=1: IX « IX—1

When W=1: AW « (IX+1, IX)
DIR=0: X « IX+2
DIR=1: IX «IX—2

Transfers the block addressed by the IX register to the
accumulator (AL or AW). To process the next byte or word
the IX register is automatically incremented (+1 or +2)
or decremented (—1 or —2) each time one byte or word
is processed. The direction of the block is determined
by the direction flag (DIR). Byte or word specification is
made by the attribute of the operand when LDM is used.
If LDMB or LDMW is used, it is specified directly to be
the byte or word type. The instruction may have a repeat
prefix, but is usually used without one.

T S AU AL S QI Sy Ty
[t

The defauit segment register ior
and therefore segment override is possible. The source
block may be located within the segment specified by
any (optional) segment register.

Bytes: 1

he source blockis DS

14.21

Flag operation:
Example:
MOV
MOV
MOV

HERE: LDM

ADD

STMB

DBNZ

None

;Add a constant to a string
DS1,1Y,DST_DWPTR
;point DST:IY to string
IX,lY
;point DS1:1X to same area
CW,10
;length of string
BYTE PTR DS1:[IX]
sfetch byte (from DS1, with
segment override prefix),
increment IX
AL,20H
;add constant
;replace modified value at
DSy,
;increment 1Y
HERE
;loop until CW =0

NEC

uPD70320/322
STM/STMB/STMW Example:
(repeat) STM [DS1-spec:]dst-block ;Fill memory area with a constant
(repeat) STMB (no operand) MOV DS1,lY,DST_DWPTR
(repeat) STMW (no operand) ;point to block
. . . XOR AW AW

Store multiple/store multiple byte/store multiple word zero the accumulator

7 0 MOV CW,10

T T ! T T | T ;count =10

170" 170" 1 ol w] REP STMAS

When W=0: (IY) «— AL
DIR=0: 1Y « IY+1
DIR=1: IY «IY—1

When W=1: (IY+1, 1Y) «— AW
DIR=0: 1Y «IY+2
DIR=1: Y «—lY-2

Transfers the contents of AL or AW to the block ad-
dressed by IY.

To process the next byte or word, 1Y is automatically
incremented (+1 or +2) or decremented (—1 or —2) each
time one byte or word is processed. The direction of the
block is determined by the direction flag (DIR).

Byte or word specification is made by the attribute of the
operand when STM is used. If STMB or STMW is used,
it is specified directly to be the byte or word type.

The destination biock must aiways be iocated within the
segment specified by the DS, segment register.

Bytes: 1
Transfers:
Repeat: 1/rep
Single operation: 1

Flag operation: None

14.22

fill 10 words with zero

NEC

uPD70320/322

BIT FIELD MANIPULATION
INSTRUCTIONS

INS reg 8,reg 8
Insert bit field (register)

T T T T T T T
1 1 reg2 reg1

16-bit field «— AW

Transfers the lower data bits of the 16-bit AW register (bit
length is specified by the 8-bit register of the second
operand) to the memory location determined by the byte
offset (addressed by the DSy segment register and the
IY index register) and bit offset (specified by the 8-bit

register of the first operand).

After the transfer, the 1Y register and the 8-bit register
specified by the first operand are automatically updated

to point to the next bit field.

Only the lower 4 bits (0-15) will be valid for the 8-bit
register of the first operand that specifies the bit offset
(maximum length: 15 bits). Also, only the lower 4 bits

(0-15) will be valid for the 8-bit register of the second
operand that specifies the bit length (maximum length:
16 bits). 0 specifies a 1-bit length, and 15 specifies a
16-bit length.

Bit field data may overlap the byte boundary of memory.

Note: For correct operation the upper four bits of the 8-bit registers
used as first and second operands must be set to 0.

Bytes: 3
Transfers: 2or4
Flag operation:

\Y
u

[Ac[P Tcy
]u}u[u

S | Z
U ¢}

I —

Example: INS DL,CL (See below for detailed
example)

/L

Bit
length

offset

Vi

—t-+—

]
t
|
4
Byte boundary Sogmlm base

49 0000114

14.23

NEC

uPD70320/322
INS reg8,imm4 Transfers: 2or4
Insert bit field (immediate data) Flag operation:
7 0

T T T T T T T \ S V4 AC P CcY
L 0 0 0 0 1 1 1 1 —I U m U U T T

T T T T T T T
L 0 0 1 1 1 0 0 1 I

Example:

T T T T T T T MoV DS1,lY,DST_DWPTR

l 1 1 0 0 o0 reg8 T ;Point to destination
MoV CL3
l ' ' imma ' ' -I ;Start at bit 3
MOV DL4
N ;Insert 5 bits

16-bit field — AW (A) MOV AWS555H
Transfers the lower data bits of the 16-bit AW register (bit ;Pattern to insert (A)
length specified by the 4-bit immediate data of the (B) INS CL,DL
second operand) to the memory location determined by ;Insert 5 bits at bit 3 (B)
the byte offset (addressed by the DS, segment register (C) INS CL,12

and the IY register) and bit offset (specified by the 8-bit
register of the first operand). After the transfer, the IY
register and the 8-bit register specified by the first oper-
and are updated to point to the next bit field.

Only the lower 4 bits (0-15) for the 8-bit register of the
first operand (15 bits maximum length) are valid. The

immediate data value of the second operand (16 bits
maximum length) is valid only from 0-15.

0 specifies a 1-bitlength, and 15 specifies a 16-bit length.
The bit field data may overlap the byte boundary of
memory.

Note: For correct operation, set the upper four bits of the 8-bit register
used as the first operand to 0.

Bytes: 4

14.24

;Insert 13 bits at bit 8 (C)

at (A) memory =
MSB LSB |MSB LSB
XXXX XXXX XXXX XXXX | XXXX XXXX XXXX XXXX
CL = 3, IY = base

at (B) memory =
XXXX XXXX XXXX
CL =8, 1Y = base

at (C) memory =
XXXX XXXX XXX1 0101 Im 0101 1010 1XXX
CL=5,1Y = base + 2

XXXXIXXXX XXXX 1010 1XXX

NEC

wPD70320/322

EXT reg 8,reg 8
Extract bit field (register)

T reg2 { J

AW « 16-bit field

valid. Only the lower 4 bits of the 8-bit register of the
second operand (maximum length: 16 bits) are valid.

0 specifies a 1-bitlength, and 15 specifies a 16-bit length.
Bit field data may overlap the byte boundary of memory.

Note: For correct operation, the upper 4 bits of the 8-bit registers
used as first and second operands must be set to 0.

Bytes: 3
Transfers: 1or2

Flag operation:

Loads the bit field data (bit length specified by the 8-bit v s |z | AC [P oY
register of the second operand) into the AW register. The u V] U 1 V] [U U
segment base of the memory location of the bit field is
specified by the DSy register, the byte offset by the IX E .)
index register, and the bit offset by the 8-bit register of xample: EXT g:é?n" |(S)e e below for detailed
the first operand. At the same time zeros are loaded to P
the remaining upper bits of the AW register.
After the transfer, the IX register and the 8-bit register
specified by the first operand are updated to point to the
next bit field. Only the lower 4 bits (0-15) of the 8-bit
register of the first operand (maximum length: 15 bits) are
Bit Bit x)
Length Oftset | Byte Offset
|
$ E /. // —f§- 4
§ - ' ‘\ §
15 0 Byte y s‘ﬂm)s‘“

~__ W

49 0000124

14.25

uPD70320/322

NEC

EXT reg8,imm4
Extract bit field (immediate data)

|
|
[1|1]0[0’0| lreg]‘J
[

AW <« 16-bit field

Loads bit field data from the memory location specified
by the byte offset to the AW register (addressed by the
DSp segment register and the IX index register) and
the bit offset (specified by the 8-bit register of the first
operand).

The bit length is specified by the 4-bit immediate data
of the second operand.

After the transfer, the IX register and the 8-bit register
specified by the first operand are updated to point to the
next bit field. Only the lower 4 bits (0-15) of the 8-bit
register of the first operand (maximum length: 15 bits) will
be valid. The immediate data value of the second oper-
and (maximum length: 16 bits) will be valid only from 0-15.

Zero specifies a 1-bit length, and 15 specifies a 16-bit
length. Bit field data may overlap the byte boundary of
memory.

Note: For correct operation, set the upper 4 bits of the 8-bit register
used as the first operand to 0.

Transfers: 1or2

Flag operation:

VIis[zJ[A] P oY
ujufujulufu
Example:
MOV DS0,IX,SRC_DWPTR
;Point to area to extract
MOV [1X],5555H
;Fill in sample patterns
MOV [IX+2],3333H
Mov CL3
;Start at bit 3
(A) MoV DLA4
(A
(B) EXT CL,DL
;Extract 5 bits starting at 3 (B)
(C) EXT cL12

;Extract 13 bits starting at 8 (C)
at (A) memory =

MSB LSB | MSB LSB
0011 0011 0011 0011 | 0101 0101 0101 0101
CL = 3, IX = base, AW = unknown

at (B)
CL = 8, IX = base, AW = (0000 0000 000)01010

at (C)

CL =5, IX = base + 2, AW = (000)1 0011 0101 0101

Bytes: 4

Bit Bit (1X)
Length Offset T Byte Offset

| i i

Y S 7/ R N
15 0 8 —[
yte Boundary Segment Base
(DS0)

49 000012A

14.26

NEC

uPD70320/322
INPUT/OUTPUT IN acc,DW
IN acc,imm8 Input to device indirectly specified by DW
Input specified I/0 device 7 0

|1‘1‘1‘0'o1owJ

‘) ‘ { in;mB

When W=0 AL « (imm8)
When W=1 AH « (imm8-+1), AL < (imm8)

Inputs the contents of the I/0 device specified by the
second operand to the accumulator (AL or AH) speci-
fied by the first operand.

Bytes: 2

Transfers: 1
Flag operation: None

Example:
IN AL,20H
IN AW,48H

(111‘0‘1‘1'0;w
When W=0: AL < (DW)

When W=1: AH «— (DW+1) AL «— (DW)

Inputs the contents of the I/O device specified by the DW

register to the accumulator (AL or AW) specified by the
first operand.

Bytes: 1
Transfers: 1
Flag Operation: None

Example: IN ALDW

14.27

NEC

pPD70320/322
OUT imm8,acc OUT DW,acc
Output to directly specified 1/0 device Output to indirectly specified (by DW) I/0 device
7 0 7 0

T
imm8

When W=0: (imm8) «— AL
When W=1: (imm8+1) «— AH, (imm8) «— AL

Outputs the contents ofthe accumulator (AL or AH) spec-
ified by the second operand to the I/0 device specified
by the first operand.

Bytes: 2

Transfers: 1

None
30H,AW

Flag operation:
Example: OUT

When W=0: (DW) «— AL
When W=1: (DW+1) « AH, (DW) «— AL

Outputs the contents of the accumulator (AL or AW) spec-
ified by the second operand to the I/0 device specified
by the first operand.

Bytes: 1

Transfers: 1

None
Dw,AW

Flag operation:
Example: OUT

14.28

N E C uPD70320/322

OUT DW,acc
Output to indirectly specified (by DW) I/0 device
7 0

When W=0: (DW) « AL
When W=1: (DW-1) « AH, (DW) «— AL

Outputs the contents of the accumulator (AL or AW) spec-
ified by the second operand to the I/0O device specified
by the first operand.

Bytes: 1

Transfers: 1

Flag operation: None
Example: OUT DWAW

14.29

wPD70320/322

NEC

PRIMITIVE INPUT/OUTPUT
(repeat) INM [DS1-spec:]dst-block,DW
Input multiple

When W=0: (IY) «— (DW)
Dir=0: 1Y «—IY+1
Dir=1: 1Y «—IY—1
When W=1: (IY+1,1Y) « (DW+1,DW)
Dir=0: 1Y «—IY+2
Dir=1: 1Y «—IY-2

Transfers the contents of the I/0 device addressed by
the DW register to the memory location addressed by the
1Y index register.

When this instruction is paired with a repeat prefix (REP),
the REP prefix controls the number of times the transfer
will be repeated. When transfers are repeated, the con-
tents (address of the 1/0 device) of the DW register are
fixed. However, to transfer the next byte or word, the IX
index register is automatically incremented (+1 or +2)
or decremented (—1 or—2) each time one byte or word
is transferred. The direction of the block is determined
by the direction flag (DIR).

Byte or word specification is performed according to the
attribute of the operand. The destination block must
always be located within the segment specified by the
DS, segment register, and a segment override prefix is
prohibited.

14.30

Bytes : 1

Transfers:
Repeat: 2/rep
Single operation: 2

Flag operation: None

Example:
MOV CW,30
MOV IY,OFFSET BYTE_VAR
REP INM BYTE_VAR,DW
;Input 30 bytes

NEC

pPD70320/322
OUTM DW,[seg-spec:]src-block ADDITION/SUBTRACTION
Output multiple ADD reg,reg
7 0 Add register with register to register
0 1 1 0 1 1 1 W l 7 0
T T T
(0 0o o o 0o o 1 w|
When W=0: (DW) « (IX)
DIR=0: IX « IX+1 T T T T T T T j
DIR=1: IX «— IX—1 [1 1 reg reg |
When W=1: (DW+1, DW) «— (IX+1,IX)
DIR=0: X « IX+2 reg «— reg + reg
DIR=1: IX «— IX—2

Transfers the memory contents addressed by the IX
index register to the 1/0 device addressed by the DW
register. When this instruction is paired with a repeat
prefix (REP), REP controls the number of times the
transfer will be repeated. When transfers are repeated,
the contents (address of the /0O device) of the DW reg-
ister are fixed. However, to transfer the next byte or word,
the IX index register is automatically incremented (+1 or
+2) or decremented (—1 or —2) each time one byte or
word is transferred. The direction or the block is deter-
mined by the direction flag (DIR).

Byte or word specification is performed according to the
attribute of the operand. The default segment register for
the source block is DSg, and segment override is pos-
sible. The source block may be located within the seg-
ment specified by any (optional) segment register.

Bytes: 1

Transfers:
Repeat: 2/rep
Single operation: 2

Flag operation: None
Example:
REP OUTM DW,BYTE PTR DS1:[IX]

Adds the contents of the 8- or 16-bit register specified
by the second operand to the contents of the 8- or 16-bit
register specified by the first operand. Stores the result
in the register specified by the first operand.

Bytes: 2
Transfers: None

Flag operation:

Example: ADD AW,BW

14.31

pPD70320/322

NEC

ADD mem,reg
Add memory with register to memory

ADD reg,mem

Add register with memory to register

S |o

T T T T T T I

]

T
mod

0 0 0 0 0 1
T

L mlod l { reg ! ! [mem| j ' I reg l \ ' mem‘ —l
| " (disp-low) | ' | " (disp-low) [I
| " (disp-high)’ '] ' " (disp-high)' ']

K
|
C
|

(mem) < (mem) + reg

Adds the contents of the 8- or 16-bit register specified
by the second operand to the 8- or 16-bit memory con-
tents addressed by the first operand. Stores the result in
the memory location addressed by the first operand.
Bytes: 2/3/4
Transfers: 2

Flag operation:

v S z AC P cY
X X X X X X

Example:
ADD WORD_VAR AW
ADD [IX],cw

14.32

reg < reg + (mem)

Adds the 8- or 16-bit memory contents addressed by the
second operand to the contents of the 8- or 16-bit reg-
ister specified by the first operand. Stores the result in
the register specified by the first operand.

Bytes: 2/3/4
Transfers: 1
Flag operation:

\ S Zz AC P cY
X X X X X X

Example:
ADD AW,WORD_VAR
ADD BW,[BP][IX]

N E C pPD70320/322

ADD reg,imm ADD mem,imm
Add register with immediate data to register Add memory with immediate data to memory
7 7

0
170 0o 0o 0o 0 s W |

T T T T T T T T T T T T T
1 1 0 0 0 reg | [mod 0 0 0 mem ‘

| |
T T T T T T T T T T T T
| imm8 or imm16-low || (disp-low) |
T T T T T T T T T T T
| imm16-high | (disp-high)]
reg «— reg + imm . i [[
eg 9 imm8 or imm16-low
Adds the 8- or 16-bit immediate data specified by the . ; , . i ;
second operand to the contents of the 8- or 16-bit reg- [i imm16-high J

ister specified by the first operand, and stores the result
in the register specified by the first operand.

Bytes: 2/3/4 Adds the 8- or 16-bit immediate data specified by the
Transfers: None second operand to the 8- or 16-bit memory contents
addressed by the first operand. Stores the result in the
memory location addressed by the first operand.

T Bytes: 3/4/5/6
|
] X Transfers: 2

Flag operation:

(mem) <« (mem) + imm

Flag operation:

\ S Zz
X X X X

Q
<

>
(@]
x| o

Example: ADD DL,10

V]S |z]|AC] P CY
X | X | X | X | X | X

Example:
ADD BYTE_VAR[BP],100
ADD WORD_VAR[BW][IX],1234H

14.33

uPD70320/322

ADD acc,imm
Add accumulator with immediafe data to accumulator

NEC

Add with carry, register with register to register

7 0 7 0
o 0o 0 0o o1 ToTw] [0 0o 0o "1 T0o"0 1 w]
L ’ im}7180ri|mm16-llow I I [1 I 1I lreg(' |regI J

[T
When W=0: AL « AL imm
When W=1: AW « AW imm

Adds the 8- or 16-bit immediate data specified by the
second operand to the contents of the accumulator (AL
or AW) specified by the first operand. Stores the result
in the accumulator specified by the first operand.
Bytes: 2/3
Transfers:

T T T T
imm16-high]

None

Flag operation:

\ S Z | AC P | CY
X X X X X X

Example:
ADD AL3
ADD AW,2000H

14.34

reg «— reg +reg + CY

Adds the contents of the 8- or 16-bit register specified
by the second operand and the contents of the carry flag
to the contents of the 8- or 16-bit register specified by
the first operand. Stores the result in the register spec-
ified by the first operand.

Bytes: 2

Transfers: None

Flag operation:

\ S z AC P cY
X X X X X X

Example: ADDC BW,DW

NEC

uPD70320/322

ADDC mem,reg

Add with carry, memory with register to memory

ADDC reg,mem
Add with carry, register with memory to register
7

0
[000‘1001WJ

7
{0001ooow]|
-

|

L

mod reqg mem ‘

7 T T T T]
I mod reg mem |

D disprlow | ‘ (disp-low)]
r T T disp-higy)] l "~ T (disp-high)’ ‘ }

(mem) «— (mem) + reg + CY

Adds the contents of the 8- or 16-bit register specified
by the second operand and the contents of the carry
flag to the 8- or 16-bit memory contents addressed by
the first operand. Stores the resultin the memory location
addressed by the first operand.

Bytes: 2/3/4

Transfers: 2

Flag operation:

vV s | z
X X | X X X X

Example: ADDC WORD_VAR,CW

reg < reg + (mem) + CY

Adds the 8- or 16-bit memory contents addressed by the
second operand and the contents of the carry flag to the
contents of the 8- or 16-bit register specified by the first
operand. Stores the result in the register specified by the
first operand.

Byte: 2/3/4
Transfers: 1

Flag operation:

\ S P4 AC P CcY
X X X X X X

Examples:
ADDC AWWORD_VAR
ADDC BW,[BP][IX]

14.35

uPD70320/322 N E C

reg «— reg + imm + CY ' im}na or ilmm16-llow

Adds the 8- or 16-bit immediate data specified by the
second operand and the contents of the carry flag to the
contents of the 8- or 16-bit register specified by the first
operand. Stores the result in the register specified by the
first operand.

T

ADDC reg,imm ADDC mem,imm
Add with carry, register with immediate data to register Add with carry, memory with immediate data to memory
7 0 7 0

T T T T T T T T T T T T T T

Lt "0 0 0 0 o"s " w] [170"70"0" 0" 0 s"w|
T T T T T T T T T T T T

[+ 71707170 reg | [mod o 1 o mem |
T T T T T T T T T

L ’ imma8 or imm16-|low I T l ' (disp-low)]
T T T T T T T T T T

l imm16-high B (disp-high) |

T T T
imm16-high

(mem) «— (mem) + imm + CY

Adds the 8- or 16-bit immediate data specified by the

Bytes: 3/4 second operand and the contents of the carry flag to the
Transfers: None 8- or 16-bit memory contents addressed by the first oper-
Flag operation: and. Stores the result in the memory location addressed
by the first operand.
Vv S Z AC P cYy Bytes: 3/4/5/6
X X X X X X Transfers: 2
Flag o tion:
Example: g operation
ADDC CW,404H
ADDC DL3 \" S 2 AC P CY

X X X X X X

Example: ADDC WORD_VAR,2000H

14.36

NEC

uPD70320/322

ADDC acc,imm

Add with carry, accumulator with immediate data to
accumulator

7 0

[010T0!1[0l1!0'WJ
T T

——
T

When W=0: AL « AL +imm8 + CY
When W=1: AW «— AW + imm16 + CY

Adds the 8- or 16-bit immediate data specified by the
second operand and the contents of the carry flag to the
accumulator (AL or AW) specified by the first operand.
Stores the result in the accumulator specified by the first
operand.

Bytes: 2/3

T T T
imm8 or imm16-low

T T T
imm16-high

Transfers: None

Flag operation:

\) S 4 AC P cY
X X X X X X

Example: ADDC AL7

SUB reg,reg
Subtract register from register to register

T

7 0
T T T T T
L 0 0 1 I 0 1 0 1 w

|
e e]

T
{ 1 1 reg reg

reg — reg — reg

Subtracts the contents of the 8- or 16-bit register spec-
ified by the second operand from the contents of the 8- or
16-bit register specified by the first operand. Stores the
result in the register specified by the first operand.
Bytes: 2

Transfers: None

Flag operation:

\ S Z | AC
X X X X

Example: SUB BW(CW

14.37

NEC

pPD70320/322
SUB mem,reg SUB reg,mem
Subtract register from memory to memory Subtract memory from register to register
7 0 7 0
T T T 1 T T T T T T T T
[o" 0o 170" v o 0" w] [0 0 7 0 1 0 1 w]
T T T T T T T T T T T T T T
[mod reg mem] [mod reg mem 1
— T T T T T
(mem) « (mem) — reg l (disp-low) J
Subtracts the contents of the 8- or 16-bit register spec-
ified by the second operand from the 8- or 16-bit memory | T ' (displ-high), ' J

contents addressed by the first operand. Stores the result
in the memory location addressed by the first operand.

Bytes: 2/3/4
Transfers: 2
Flag operation:

\] S Z | AC P | CY
X X X X X X

Example:
suB WORD|VAR,BW
suB [IX],AL

reg < reg — (mem)

Subtracts the 8- or 16-bit memory contents addressed
by the second operand from the 8- or 16-bit register
specified by the first operand. Stores the result in the
register specified by the first operand.

Bytes: 2/3/4

Transfers: 1

Flag operation:

\) S Z | AC [cY

Example: SUB CWWORD_VAR

14.38

NEC

WPD70320/322

Subtracts the 8- or 16-bit immediate data specified by
the second operand from the contents of the 8- or 16-bit

SUB reg,imm SUB mem,imm
Subtract immediate from register to register Subtract immediate data from memory to memory
7 0 7 0
T T T T T T T T T T T T
(170 0 00 0o s w] [170 0o 0o o 0o s w|
T T T T T T T T T T T T
. 1 1 1 0 1 reg j [mod 1 0 1 mem J
T — T T T T T T T T
l imm8 or imm16-low J l (disp-low) l
T T T T T T T T T
x imm16-high] i (disp-high)]
— i T T R T T T
reg «—reg —imm , imm8 or imm16-low J

register specified by the first operand. Stores the result
in the register specified by the first operand.

Bytes: 3/4
Transfers: None

Flag operation:

[AC] P Jov
{x X X

' S
X X

-
X

Example: SUB IX,4

T T T T T
[imm16-high

(mem) «— (mem) — imm

Subtracts the 8- or 16-bit immediate data specified by
the second operand from the 8- or 16-bit memory con-
tents addressed by the first operand. Stores the result in
the memory location addressed by the first operand.

3/4/5/6
Transfers: 2

Bytes:

Flag operation:

\Y S Z | AC P cY
X X X X X X

Example: SUB WORD_VAR,10

14.39

uPD70320/322

NEC

SUB acc,imm

Subtract immediate data from accumulator
to accumulator

0
T T T T T T T
0 1 0 1 1 0 w

T T T T
imma8 or imm16-low

o
I
l

T L
imm16-high

When W=0: AL «— AL —imm8

When W=1: AW « AW — imm16

Subtracts the 8- or 16-bit inmediate data specified by
the second operand from the accumulator (AL or AW)
specified by the first operand. Stores the result in the
accumulator specified by the first operand.

Bytes: 2/3

Transfers: None

Flag operation:

VISsS[zJAaTP] oy
X [x [x| x| x|x

Example: SUB AL8

SUBC reg,reg
Subtract with carry, register from register to register
7 0

[0T0|O|1I110‘1'Wl

T T T T T T T
b 1 reg reg]

reg «+— reg —reg — CY

Subtracts the contents of the 8- or 16-bit register spec-
ified by the second operand and the contents of the carry
flag from the 8- or 16-bit register specified by the first
operand.

Bytes: 2
Transfers: None

Flag operation:

\ S Z | AC P CY
X X X X X X

Example: SUBC BW,DW

14.40

NEC

wPD70320/322

SUBC mem,reg

Subtract with carry, register from memory to memory

SUBC reg,mem

Subtract with carry, memory from register to register

0
T T T T T

0‘[011101w}

T T T T
mod reg

7
| o
l mod ' ‘regi mem

T T L T
(disp-low)

(disp-low)

7

[0 ‘ 0 ! 0 1 1 0 0 W
l

|

[

T T T
(disp-high)

——
—

T T
(disp-high)

7 1

(mem) « (mem) — reg — CY

Subtracts the contents of the 8- or 16-bit register spec-
ified by the second operand and the contents of the carry
flag from the 8- or 16-bit memory contents specified by
the first operand. Stores the resultin the memory location
addressed by the first operand.

Bytes: 2/3/4
Transfers: 2
Flag operation:

V]sJ[zTJAa]P]cY
x| x x| x x| Xx
Example: SUBC BYTE_VARAL

14.41

reg «— reg — (mem) — CY

Subtracts the contents of the 8- or 16-bit memory ad-
dressed by the second operand and the contents of the
carry flag from the 8- or 16-bit register specified by the
first operand. Stores the result in the register specified
by the first operand.

Bytes: 2/3/4
Transfers: 1

Flag operation:

Z [AC| P | OY
X | X | X | X

vis]
X X
. !

Example: SUBC AWWORD_VAR

uPD70320/322

SUBC reg,imm

Subtract with carry, immediate data from register
to register

NEC

Subtract with carry, immediate data from memory
to memory

0
T T T
0 0 0 0 0 S w

reg «— reg — imm — CY

Subtracts the contents of the 8- or 16-bitimmediate data
specified by the second operand and the contents of the
carry flag from the 8- or 16-bit register specified by the
first operand. Stores the result in the register specified
by the first operand.

Bytes: 3/4
Transfers: None
Flag operation:

Tac] P oy
I X [x [X

\ S 4
X X X

Example: SUBC DL,10

7 0
[1 T o T 0 T o T 0 T 0 T s T W] T T T T]
l 11 T o Ty I rég|] mod 0 1 1 mem J
T T T T T T T T T T
[imm8 or imm16-low l (disp-low)]
T T UL T T T 1 T
] imm16-high l (disp-high)]
|
|

T T T
imm8 or imm16-low

K
|
|
|
|

" imm16-high

(mem) < (mem) — imm — CY

Subtracts the contents of the 8- or 16-bitimmediate data
specified by the second operand and the contents of
the carry flag from the 8- or 16-bit memory contents
addressed by the first operand. Stores the result in the
memory location addressed by the first operand.

Bytes: 3/4/5/6
Transfers: 2

Flag operation:

\ S 4 AC P CcY
X X X X X X

Example: SUBC WORD_VAR,25

14.42

N E C uPD70320/322

SUBC acc,imm

Subtract with carry, immediate data from accumulator
to accumulator

0
F) o o 1 1 1 0 W |
(‘ imms8 or imm16-low ‘ J

{ ‘ ‘ ‘ immfﬁ-high‘ ‘ 4]

When W=0: AL « AL —imm8 — CY

When W=1: AW «— AW — imm16 — CY

Subtracts the 8- or 16-bit immediate data specified by
the second operand and the contents of the carry flag
from the accumulator (AL or AW) specified by the first
operand. Stores the result in the accumulator specified
by the first operand.

Bytes: 2/3

Transfers: None

Flag operation:

VS Z A P O
X | X | X | X X X |

Example: SUBC AL8

14.43

pPD70320/322

NEC

BCD ARITHMETIC

ADD4S [DS1-spec:]dst-string,[seg-spec:]src-string
ADD4S (no operand)

Add nibble string
7
T T T T T T T
L 0 0 0 0 1 1 1
T T T T T T T
LO 0 1 0 0 0 0 0 [

BCD string (IY,CL) < BCD string (IY,CL) + BCD string
(IX,CL)

Adds the packed BCD string addressed by the IX index
register to the packed BCD string addressed by the IY
index register. Stores the result in the string addressed
by the IY register. The length of the string (number of BCD
digits) is specified by the CL register and can vary from
1 to 254 digits.

When the number of digits is even, the zero and carry
flags will be set according to the result of the operation.
When the number of digits is odd, the zero and carry flags
may not be set correctly. In this case, (CL = odd), the zero
flag will not be set unless the upper 4 bits of the highest

Lyte are all zero. The carry flag will not be setunless there
is a carry out of the upper 4 bits of the highest byte. When
CL is odd, the contents of the upper 4 bits of the highest
byte of the result are undefined.

The destination string must always be located within the
segment specified by the DS segment register. Segment
override is prohibited.

The default segment register for the source string is DSp
and segment override is possible. The source string may
be located within the segment specified by any (optional)
segment register.

The format for the packed BCD string follows.
Bytes: 2

Transfers: 3n

Flag operation:

\" S 4 AC

P Jcy
ululx/|lulu

| X

Example: See example for CMP4S

Byte Offset +m L +1 +0

§ T T T T
Hemeny J : l : ; l : J :

¢ ! — L 4
Digit Offset +CL +4 43 +2 +1 0

490000134

14.44

NEC

pPD70320/322

SUBA4S [DS1-spec:]dst-string,[seg-spec:]src-string
SUBA4S (no operand)

Subtract nibble string

7
T T T T T T
r 0 0 0 0 1 1 1
T T T T T T T 1

lo 0o 1 o o 1 0]

BCD string (IY,CL) « BCD string (IY,CL) — BCD string
(IX,CL)

Subtracts the packed BCD string addressed by the IX
index register from the packed BCD string addressed by
the 1Y index register. Stores the result in the string
addressed by the lY register.

The length of the string (number of BCD digits) is spec-
ified by the CL register and can vary from 1 to 254 digits.

When the number of digits is even, the zero and carry
flags will be set according to the result of the operation.
When the number of digits is odd, the zero and carry flags
may not be set correctly. In this case, (CL = odd), the zero
flag will not be set unless the upper 4 bits of the highest
byte are all zero. The carry flag will notbe setunless there

is a carry out of the upper 4 bits of the highest byte. When
CL is odd, the contents of the upper 4 bits of the highest
byte of the result are undefined.

The destination string must always be located within the
segment specified by the DS segment register. Segment
override is prohibited.

The default segment register for the source string is DSp,
and segment override is possible. The source string may
be located within the segment specified by any (optional)
segment register.

The format for the packed BCD string is shown as
follows.

Bytes: 2
Transfers: 3n

Flag operation:

Z]AC
X I u

I

| P CY
U | X

i

vV | S |
ulu|

it

Example: See example for CMP4S

Byte Offset rm

T
Memory

—
Digit Offset +eL

490000 34

14.45

NEC

uPD70320/322

CMP4S Example:
[DS1-spec:]dst-string,[seg-spec:]src-string wuPD70116 BCD string operation
CMP4S (no operand) MOV AWPS ;Set both data

Compare nibble string
7

T T T T T T T
Lo 0o 0 o 1 T T T

Lo[o'1‘o'o'1'1wo|

BCD string (IY,CL) — BCD string (IX,CL)

Subtracts the packed BCD string addressed by the IX
index register from the packed BCD string addressed by
the IY index register. The result is not stored and only
the flags are affected. The length of the string (number
of BCD digits) is specified by the CL register and can vary
from 1 to 254 digits.

When the number of digits is even, the zero and carry
flags will be set according to the result of the operation.
When the number of digits is odd, the zero and carry flags
may not be set correctly. In this case, (CL = odd), the zero
flag will not be set unless the upper 4 bits of the highest
byte are all zero. The carry flag will not be setunless there
is a carry out of the upper 4 bits of the highest byte. When
CL is odd, the contents of the upper 4 bits of the highest

ROy S R ara

Uyle oI UIE IUSU" are unuenneu

The default segment register for the source string is DSg
and segment override is possible.

The source string may be located within the segment
specified by any (optional) segment register. The format
for the packed BCD string is shown below.

Bytes: 2
Transfers: 2
Flag operation:

;segments to

MOV DSO,AW ;same as program
MOV DS1,AW ;segment
MoV IX,OFFFSET STRO

;Point to BCD strings
MOV IY,OF FSET STR1

MOV CL8 ;Eight digits
;in strings (A)

CMP4S ;Compare (B)
ADD4S ;Add string0
;to string1 (C)
CMP4S ;Compare again (D)
SuUB4S ;Subtract string0
Jfrom string1 (E)
SuB4S ,again (result is
zero) (F)
SuB4S ;and again
(underflow) (G)
HALT
STRO DW 4321H,0765H
,BCD# 07654321
STR1 DW 4321H,0765H
;BCD# 07654321

at (A), STRO = 7654321,

; STR1 =7654321,2=7,CY =7

; at (B), STRO = 7654321,

: STR1 = 7654321,Z=1,CY =0

; at (C), STRO = 7654321,

; STR1 = 15308642, Z=0,CY =0
;at (D), STRO = 7654321,

: STR1 = 15308642, Z =0, CY = 0
at (E), STRO = 7654321,

; STR1 = 7654321,Z = 0,CY = 0

at (F), STRO = 7654321,

V]S |z AP CY ; o 2;28:(;20%2?0,2:1.0\/:0
1 T T H at) = 5. i
vijuixjuiyix : STR1 = 92345679, Z = 0, CY = 1
X
Y
Byte Offset m " o L
Memory] i l !]A ‘ ! F
mguo;:en +cL s +4 +3 +2))

14.46

NEC

uPD70320/322

ROL4 reg8
Rotate left nibble, 8-bit register

ROL4 mem8
Rotate left nibble, 8-bit memory

7 0
T T T T i
o o o 0 1 1

7

! l
[0 "0 170771 0 0 o] [0 o 170 170" 0o o]

T T i T T T T T T T T T
{ 1 1 0 0 0 reg | [mod 0 0 0 mem l
{ B (disp-low) | }

| A E— T
rog8 1 (disp-high) }

g |

49, 000024A

Treats the byte data of the 8-bit register specified by the
operand as a two-digit BCD and uses the lower 4 bits
of the AL register (AL() to rotate that data one digit to
the left.

Due to the result of this instruction, the contents of the
upper 4 bits of the AL register are not assured.

Bytes: 3

Transfers: None

Flag operation: None
Example:
MOV BL,95H
MOV AL,03H
ROL4 BL ;BL=53H, AL=X9H

Higher Lower

AL
4Bits 4Bits

49-000406A

Treats the byte data of the 8-bit memory location
addressed by the operand as a two-digit BCD and uses
the lower 4 bits of the AL register (AL,) to rotate that data
one digit to the left.

Due to the resuit of this instruction, the contents of the
upper 4 bits of the AL register are not assured.

Bytes: 3/4/5
Transfers: 2

Flag operation: None
Example:
MOV BYTE PTR [IX],12H
MOV AL,03H
ROL4 [IX] ;[IX]=23H, AL =X1H

14.47

uPD70320/322
ROR4 reg8 ROR4 mem8
Rotate right nibble, 8-bit register Rotate right nibble, 8-bit memory
7 0 7 0
T T T T T T T T T T T T T T
l 0 0 0 0 1 1 1 1 1 l 0 0 0 0 1 1 1 1—|
T T T I T T T T T T T T T
lo o0 1 0" 1 To "1 0] oo "1 T0o"T1 T 1" 0]
T T I T T T T I T T T T T
[+ 717070 0 reg][mod o 0 o mem |
reg8 (mem8)
AL, Higher Lower AL, Higher Lower
4 Bits 4Bits 4Bits 4Bits
49 000025A 49-000407A

Treats the byte data of the 8-bit register specified by the
operand as two-digit BCD and uses the lower 4 bits of
the AL register (AL) to rotate the data one digit to
the right.

Due to the result of this instruction, the contents of the
upper 4 bits of the AL register are not assured.

Bytes: 3
Transfers: None
Flag operation: None
Example:
MOV CL,95H
MOV AL,03H
ROR4 CL ;CL=239H, AL = X5H

Treats the byte data of the 8-bit memory location
addressed by the operand as a two-digit BCD and uses
the lower 4 bits of the AL register (AL,) to rotate that data
one digit to the right. Due to the result of this instruction,
the contents of the upper 4 bits of the AL register are not
assured.

Bytes: 3/4/5
Transfers: 2
Flag operation: None
Example:
MOV BYTE PTR [IX],12H
MOV AL,03H
ROR4 [IX] ;[IX]=31H, AL = X2H

14.48

N E C pPD70320/322

INCREMENT/DECREMENT INC mem
INC reg8 Increment memory
Increment 8-bit register 7 0
7 0 [11 1 1w]
|;1!1T1[1!1!1‘170J
| ma 0 0 0 mem |
l1z11010r01]reg' J /
T T T i T
[' (disp-low) l
reg8 «—reg + 1 ; ! r : - - :
Increments by 1 the contents of the 8-bit register spec- IV (disp-high) ’
ified by the operand.

Bytes: 2 (mem) < (mem) + 1

Transfers: None Increments by 1 the contents of the 8- or 16-bit memory

location specified by the operand.
Bytes: 2/3/4
cY Transfers: 2

Flag operation:

vIis]z]AC
SERE

Example: INC BL V]S]zZ]AC]
X

Flag operation:

Example:
INC WORD_VAR
INC BYTE PTR [BW]

14.49

pPD70320/322
INC reg16 DEC reg8
Increment 16-bit register Decrement 8-bit register
7 0 7 0
T
L0|1|0|o|0:]regl—,l1l1l1‘1l11T1[0]

reg16 < reg16 + 1

Increments by 1 the contents of the 16-bit register spec-
ified by the operand.

Bytes :1

Transfers: None

Flag operation:

\ S AC P | CY
X X X X X

N

Example:
INC BW
INC IX

T T T T T T T
b 1 0 0 1 reg I
reg8 «reg8 — 1
Decrements by 1 the contents of the 8-bit register spec-
ified by the operand.
Bytes: 2
Transfers:

None
Flag operation:

v S Z | AC P CcY
X X X X X

Example: DEC DH

14.50

NEC

pPD70320/322
DEC mem DEC reg16
Decrement memory Decrement 16-bit register
7 0 7 0
| 1 1 1 1 1 1 1w } { o 1 0 0 1 " reg

mem l

|
|

l (disp-low)

] ‘ (disp-high)

(mem) «— (mem) — 1

Decrements by 1 the 8- or 16-bit memory contents
addressed by the operand.

Bytes: 2/3/4
Transfers: 2

Flag operation:

vV s 1 zZ AC P OCY
X X X X x|
Example:

DEC BYTE_VAR

DEC WORD_VAR[BW][IX]

14.51

reg16 « reg16 — 1

Decrements by 1 the contents of the 16-bit register spec-
ified by the operand.

Bytes: 1

Transfers: None

Flag operation:

Vs z Aacl P oy
X X X X ;X

Example: DEC BP

uPD70320/322 N E C

MULTIPLICATION MULU mem8
MULU reg8 Multiply unsigned, 8-bit memory
Multiply unsigned, 8-bit register 7
T T T T T T T
7 0 L1 1 1 1 0 1 1 1
T T T T T T T
1 1 11 0o 1 1 0 — —
l L mod I 1 I 0 I 0 mem[l
T T T T T T T
1 1 1 0 0 reg
L] | " (disp-low) ' |
CVV:: -— AL_X .re98 z —— l |
en AH=0: CY «— 0,V «— 0 L (disp-high) 1

When AH#0: CY «— 1,V «— 1

Performs unsigned multiplication of the contents of the =~ AW <« AL X (mem8)

AL register and the contents of the 8-bitregister specified =~ When AH=0: CY <0,V « 0

by the operand. Stores the word result in the ALand AH ~ When AH#0: CY «— 1,V «— 1

registers. When the upper half (AH) of the result is not g o me unsigned multiplication of the contents of the
0. the carry and overflow flags are set. AL register and the 8-bit memory location addressed by
Bytes: 2 the operand. Stores the word result in the AL and AH
registers. When the upper half (AH) of the result is not
0, the carry and overflow flags are set.

Flag operation: Bytes: 2/3/4

. Transfers: 1

\ S z AC P (24
X U U u §] X

Transfers: None

Flag operation:

i V]is]ZJA] P cy
Example: -

X U [u | u u | x
MOV AL,113 ;AW = XXODH
MOV CL5 £ o
MULU CL AW=0041H=65C=V=0 xample:

MOV AL35

AW = XX23H

MOV BYTE_VAR20
MULU BYTE_VAR
;AW = 02BCH = 700, C =V = 1
[]
[)

MULU BYTE PTR[IX]

14.52

NEC

uPD70320/322
MULU reg16 MULU mem16
Multiply unsigned, 16-bit register Multiply unsigned, 16-bit memory
7 0 7 0
T T T T T T T

‘ 1 1 1 1 0 1 [1 [1 1 1 1 0 1 1 1 '

T T T T T T T T T . T ‘
; 1 1 1 0 0 reg 1 mod 1 0 0 mem I
DW, AW «— AW X reg16 1 ’ ‘ " (disp-low) ‘ l
When DW=0:CY «— 0,V <0
When DW#0: CY «— 1,V « 1 } T ax h)T T J

isp-hig

Performs unsigned multiplication of the contents of the

AW register and the contents of the 16-bit register spec- DW. AW «— AW X 1
ified by the operand. Stores the double-word resultin the Whén DW=0: CY (,T%mve‘)_ 0
AW and DW registers. When the upper half (DW) of the \when DWs0: CY «— 1' Vo1

result is not 0, the carry and overflow flags are set.
Bytes: 2
Transfers: None

Flag operation:

V[s]Z]A]| P | oY
uilu

X [u u X
Example:

MOV AW,1234H

MOV CWwgs

MULU CW

;DW = 0000H, AW = 369CH,
C=V=0

Performs unsigned multiplication of the contents of the
AW register and the 16-bit memory contents addressed
by the operand. Stores the double-word resultin the AW
and DW registers. When the upper half (DW) of the result
is not 0, the carry and overflow flags are set.

Bytes: 2/3/4

Transfers: 1

Flag operation:

Z [AC
uju

Q
<

v I[s
xiu

c|To

Example:

MOV AW,400H

MOV~ WORD_VAR,9310H

MULU WORD_VAR
;DW = 024CH,AW = 4000H,
Cc=v=1

14.53

uPD70320/322

MUL reg8 MUL mems8

Multiply signed, 8-bit register Multiply signed, 8-bit memory
7

7 0
L1I1'1ﬁ1lor1’1‘01

I 1 1 1 1 0

. T . T T 71
‘11101

AW «— AL X reg8

When AH=sign extension of AL: CY « 0,V «— 0
When AHssign extension of AH: CY « 1,V « 1

Performs signed multiplication of the contents of the AL
register and the contents of the 8-bit register specified
by the operand. Stores the double-word result in the AL
and AH registers. When the upper half (AH) of the result
is not the sign extension of the lower half (AL), the carry

and overflow flags are set.

Bytes: 2
Transfers: None

Flag operation:
[AC] P

v Lz]

cY

S p2
X u[uyu u

Example:
MOV AL,18
JAW = XX12H
MOV CL,—2
;CL=FEH
MUL CL

AW =FFDC=-36,C=V=0

14.54

[;m[odl110|1l memI
[I T

T T T . T
[(disp-high)

|
|
(dis;;-low) ’ T [l
|

AW « AL X (mem8)

When AH=sign extension of AL: CY «— 0,V «— 0

When AH#sign extension of AH: CY «— 1,V «— 1
Performs signed multiplication of the contents of the AL
register and the 8-bit memory location addressed by the
operand. Stores the double-word resultin the AL and AH
registers. When the upper half (AH) of the result is not
the sign extension of the lower half (AL), the carry and
overflow flags are set.

Bytes: 2/3/4
Transfers: None

Flag operation:

v S 4 AC P cYy
X U U U U X

Example:
MOV AL,100
AW = XX64H
MOV BYTE_VAR,—4
;=FCH

MUL BYTE_VAR
JAW = FE70H = —400,C =V =1

N E C uPD70320/322

MUL reg16 MUL mem16
Multiply signed, 16-bit register Multiply signed, 16-bit memory
7 0 7 0
T T T T T T T I T T T
l 1 1 1 1 0 1 1 1] .’ 1 1 1 1 0 1 1 1 l
T T T T T T T T T T T
| 1 1 1 0 1 reg | [mod 1 0 1 mem ‘
DW, AW «— AW X reg16 l ‘ ! (disp-low) l
When DW=sign extension of AW: CY « 0,V «— 0
When DWs#sign extension of AH: CY «— 1,V « 1 l T T i T i h)‘r T —’
isp-hig

Performs signed multiplication of the contents of the AW
register and the contents of the 16-bit register specified —

by the operand. Stores the double-word result in the AW \?Vv:éﬁvngzgnxeilin;iﬁz of AW: CY — 0,V «— 0
and DW registers. When the upper half (DW) of the result When DW-%sign extension of AW: CY «— 1‘V —1
is not the sign extension of the lower half (AW), the carry '
and overflow flags are set, Performs signed multiplication of the contents of the AW
register and the 16-bit memory contents addressed by
Bytes: 2 the operand. Stores the double-word resultin the AW and
Transfers: None DW registers. When the upper half (DW) of the result is
not the sign extension of the lower half (AW), the carry

Flag operation: and overflow flags are set.

\' S z AC P CY Bytes: 2/3/4
X U U U] X Transfers: 1
Flag operation:
Example:
MOV AW—10 \ S Z [AC] P oY
AW = FFF6H x ulufulu X
MOV BW,—10
:BW = FFF6H Example:
MUL BW
;DW = 0000, AW = 0064H = 100, MOV AW,—10
C=V=0 AW = FFF6
MOV [1X],—20

;= FFEC

MUL WORD PTR [IX]
:DW = 0000, AW = 00C8H = 200,
C=Vv=0

14.55

nwPD70320/322

NEC

MUL reg16,reg16,imm8
MUL reg16,imm8

Multiply signed, 16-bit register X 8-bit immediate data
to 16-bit register
0

7
Lo'1'1T0'1'ol1‘1]
i1|1| TregT T lregl "

T T T T T T T
imm8

reg16 «— reg16 X imm8
Product < 16 bits: CY < 0,V «— 0
Product > 16 bits: CY «— 1,V «— 1

Performs signed multiplication of the contents of the
16-bit register specified by the second operand. (If a two-
operand description, then performs signed multiplication
on the contents specified by the first operand.) Performs
signed multiplication on the 8-bit immediate data spec-
ified by the third operand. (If a two-operand description
then performs signed multiplication on the data specified
by the second operand.)

When the source register and the destination register are

the same, a two-operand description is acceptable,

operang cesc 1S ace

Bytes: 3
Transfers: None

Flag operation:

vV]is[z][Aa]P]cY
X T ululujfulx
Example:
MUL AWBW10
AW = BW*10
MUL Cw25
iCW = CW*25

14.56

MUL reg16,mem16,imm8

Multiply signed, 16-bit memory X 8-bit immediate data
to 16-bit register

7 0
0 1 1 0 1 0 1

(disp-low)

T
imm8

]
|
|
' (disp-high)’ |]
[| |

mimininin

reg16 «— (MEM16) X imm8
Product < 16 bits: CY < 0,V «— 0
Product > 16 bits: CY «— 1,V «— 1

Performs signed multiplication of the contents of the
16-bit memory contents addressed by the second oper-
and and the 8-bit immediate data specified by the third
operand. Stores the result in the 16-bit register specified
by the first operand.

Bytes: 3/4/5

Transfers: 1
Flag operation:

V| |s | zZ[A]P]CY
X u U u § u X
Example:
MUL CWWORD_VAR,7
;CW = [WORD_VAR]*7
MUL AW[IX]22
AW = [IX]*22

NEC

uPD70320/322

MUL reg16,reg16,imm16
MUL reg16,imm16

Multiply signed, 16-bit register X 16-bit immediate data
to 16-bit register

7 0
LO T] T p T : T] T P x”— T p]
l T T T T T T T

1 1 reg reg I

T T T T T T T
[imm16-low ‘
T
|

T T T
imm16-high

reg16 «— reg16 X imm16
If product < 16 bits: CY «— 0,V «— 0
If product > 16 bits: CY «— 1,V «— 1

Performs signed multiplication of the contents of the
16-bit register specified by the second operand — the
firstoperand, when atwo-operand description —andthe
16-bit immediate data specified by the third (second)
operand. Stores the result in the 16-bit register specified
by the first operand.

When the source register and the destination register are
the same, a two-operand description is possible.

Bytes: 4
Transfers: None

Flag operation:

Vs [zJ[AaT]PT]cy
X|]ujuju/lu [X
Example:
MUL AW,BW,200H
AW = BW*200H
MUL 1X,300
J4X = IX*300

MUL reg16,mem16,imm16

Multiply signed, 16-bit memory X 16-bit immediate data
to 16-bit register

7 0

[0 T 1 T 1 T 0 T 1 T 0 T 0 T B]

T T T T T \ —

[mod reg mem |

o " (disp-low) [

| " T (disp-high)’ ‘ |
T T T T T

l immi6-low l
T T T T T T

‘ imm16-high |

reg16 « (mem16) X imm16
If product < 16 bits: CY «— 0,V «— 0
If product > 16 bits: CY «— 1,V «— 1

Performs signed multiplication of the 16-bit memory con-
tents specified by the second operand and the 16-bit
immediate data specified by the third operand. Stores the
result in the 16-bit register specified by the first operand.
Bytes: 4/5/6

Transfers: 1

Flag operation:

v S Z
X (V] u

AC] P [cy

ujujx

Example:

MUL CWWORD_VAR,200H
;CW = [WORD_VAR]*200H
AW|[IX],850

JAW = [IX]*850

MUL

14.57

uPD70320/322
DIVISION DIVU mems8
DIVU reg8 Divide unsigned, 8-bit memory
Divide unsigned, 8-bit register 7 0
T T T T
7 0 [1 1 1 1 0 ' 1 } 1 I 0]
T T T T T T T
1 1 1 1 0 1 1, O : : |
L ’ [mod 1 1 I 0 I |mem|]
[1] 1 ‘ 1 ! 1 ‘ 0 ‘] regy I
T T T
| (disp-low) || |
t -—
V?Ir::n te:};v+ reg 3<FFH: L ' " (disp-high)"
= (disp-high)

AH <« temp % reg8

AL «— temp = reg8
When temp - reg8 > FFH:

(SP—1,SP—2) «— PSW,

(SP—3,SP—4) « PS,

(SP—5,SP—6) «— PC,

SP «— SP — 6,

IE <0,

BRK « 0,

PS « (003H, 002H),

PC « (001H, 000H)

Divides (using unsigned division) the contents of the AW
16-bit register by the contents of the 8-bit register spec-
ified by the operand. The resulting quotient is stored in
the AL register. Any remainder is stored in the AH register.

When the quotient exceeds FFH (the capacity of the AL
destination register) the vector 0 interrupt is generated.
When this occurs, the quotient and remainder become
undefined. This usually occurs when the divisor is 0. The
fractional quotient is rounded off.

Bytes: 2
Transfers: None

Flag operation:

\ S Z | AC P | CY
u U U u U U

Example:
MOV AW,204
MOV CL,10
DiVU CL
JAL=20,AH =4

14.58

temp — AW
When temp =+ (mem8) = FFH:
AH <« temp % (mem8),
AL < temp + (mem8).
When temp <+ (mem8) > FFH:
(SP—1,SP—2) « PSW,
(SP—3,SP—4) — PS,
(SP—5,SP—6) «— PC,
SP «—SP -6
IE <0,
BRK «— 0,
PS « (003H, 002H),
PC « (001H, 000H),

Divides (using unsigned division) the contents of the AW
16-bit register by the 8-bit memory contents specified by
the operand. The quotient is stored in the AL register and
the remainder, if any, is stored in the AH register.

When the quotient exceeds FFH — the capacity of the
AL destination register — the vector 0 interrupt is gener-
ated. When this occurs, the quotient and remainder
become undefined. This especially occurs when the di-
visor is 0. The fractional quotient is rounded off.

Bytes: 2/3/4
Transfers: 1

Flag operation:

v S zZ [ACT] P Jcoy
u | u U J u U u
Example:

MOV AW,3410

MOV [BW],19

DIVU [BW]

JAL=179, AH=9

NEC

wPD70320/322

DIVU reg16
Divide unsigned, 16-bit register

DIVU mem 16

Divide unsigned, 16-bit memory

"y 11 0 11

T T T T T T
mod 1 1 0 mem

temp «— DWAW
When temp -~ reg16 > FFFFH:
(SP—1,SP—2) «— PSW,
(SP—3,SP—4) — PS,
(SP—5,SP—6) « PC,
SP —SP —6
IE «—0,
BRK <0
PS « (003H, 002H),
PC <« (001H, 000H)
All other times:
DW <« temp % reg16, AW « temp = reg16

Divides (using unsigned division) the contents of the DW
and AW 16-bit register pair by the contents of the 16-bit
register specified by the operand. The quotient is stored
in the AW register. The remainder, if any, is stored in the
DW register. When the quotient exceeds FFFFH (the
capacity of the AW destination register) the vector 0 inter-
rupt is generated, and the quotient and remainder
become undefined. This most often occurs when the
divisor is 0. The fractional quotient is rounded off.

Bytes: 2
Transfers: None

Flag operation:
|

V | S P
u§uuuuiu

Example:
MOV DW,0348H
MOV AW,2197H
;DW,AW = 03482197H
MOV BW,2000H
DivU BW

;AW = 1A41H,DW = 0197H

7
E
|
L) ' ‘ (disr;J-Iow){

T T T T
[(disp-high)

I
| IS D SR D S—

temp «— DWAW

When temp + (mem16) > FFFFH:
(SP—1,SP—2) «— PSW,
(SP—3,SP—4) «— PS,
(SP—5,SP—6) «— PC,
SP «— SP—6
IE <0,
BRK <0,
PS « (003H, 002H),
PC « (001H, 000H)

All other times:
DW « temp % (mem16), AL < temp -+ (mem16)

Divides (using unsigned division) the contents of the DW
and AW 16-bit register pair by the 16-bit memory con-
tents specified by the operand. The quotient is stored in
the AW register. The remainder, if any, is stored in the DW
register.

When the quotient exceeds FFFFH (the capacity of the
AW destination register) the vector 0 interrupt is gener-
ated and the quotient and remainder become undefined.
This especially occurs when the divisor is 0. The frac-
tional quotient is rounded off.

Bytes: 2/3/4
Transfers: 1

Flag operation:

v sz |Aa]| P |cCY
ululJululu u
Example:

MOV DWp

MOV AW,100

MOV [IX][BX]5

DIVU [IX][BX]

;AW = 0014H = 20,DW =0

14.59

pPD70320/322
DIV reg8 DIV mem8
Divide signed, 8-bit register Divide signed, 8-bit memory
7 0 7 0
T T T T T T T T T T
r 1 ’ 1 l 1 ‘ 1 0 1 1 0 J l 1 1 1 1 0 1 I 1 0 l
T T T T T T T T T T 1 T T T
l 1 1 1 1 1 reg | [mod 1 1 1 mem \
T T T T T
temp «— AW ‘ (disp-low) I
When temp =+ reg8 > 0 and temp -+ reg8 > 7FH or temp
<+ reg8 > 0 and temp -~ reg8 > 0-7FH-1: T T T T . T T
(SP—1,8P—2) — PSW, [(disp-high)]

(SP—3,SP—4) « PS,

(SP—5,SP—6) «— PC,

SP «— SP — 6,

IE <0,

BRK « 0,

PS « (003H, 002H),

PC « (001H, 000H)
All other times:

AH <« temp % reg8,

AL «— temp + reg8

Divides (using signed division) the contents of the AW
16-bit register by the contents of the 8-bit register spec-
ified by the operand. The quotientis stored in the AL 8-bit
register. The remainder, if any, is stored in the AH register.
The maximum value of a positive quotient is +127 (7FH),
and the minimum value of a negative quotient is
—127 (81H).

When a quotient is greater than either maximum value(s)
the quotient and remainder become undefined, and the
vector O interrupt is generated. This especially occurs
when the divisor is 0. A fractional quotient is rounded off.
The remainder will have the same sign as the dividend.
Bytes: 2
Transfers: None

Flag operation:

V| S| Z |AC| P
U U U u u | u

Example:
MOV AW, —247
MOV CL3
DIV CcL

AL =—82,AH = —1

14.60

temp «— AW
When temp <+ (mem8) > 0 and (mem8) > 7FH or
temp + (mem8) < 0 and temp -+ (mem8) > 0-7FH-1:
(SP—1,SP—2) «— PSW,
(SP—3,SP—4) «— PS,
(SP—5,SP—6) «— PC,
SP «— SP — 6,
IE <0,
BRK « 0,
PS « (003H, 002H),
PC <« (001H, 000H),
All other times:
AH <« temp % (mem8), AL < temp =+ (mem8)

Divides (using signed division) the contents of the AW
16-bit register by the contents of the 8-bit memory loca-
tion specified by the operand. The quotient is stored in
the 8-bit AL register, while the remainder, if any, is stored
in the AH register. The maximum value of a positive quo-
tientis +127 (7FH), and the minimum value of a negative
quotient is —127 (81H). When a quotient is greater than
either maximum value(s), the quotient and remainder
become undefined and the vector 0 interrupt is
generated.

This especially occurs when the divisor is 0. A fractional
quotientis rounded off. The remainder will have the same
sign as the dividend.

Bytes: 2/3/4
Transfers: 1

Flag operation:

vV]s Z [AC] P JoY
V] | V] u l U u U
Example:

MOV AW,1234

MOV (BW], —20

DIV BW]

JAL=—61,AH =14

NEC

uPD70320/322

DIV reg16
Divide signed, 16-bit register
7 0

T T T T T T T

l 1 1 1 1 0 1 1]
T T T T T T T

{ 1 1 1 1 1 reg J

temp — DWAW

When temp =+ reg16 > 0 and temp -+ reg16 < 7FFFH or
temp + reg16 < 0 and temp + reg16 > 0-7FFFH-1:
(SP—1,SP—2) «— PSW,
(SP—3,SP—4) « PS,
(SP—5,SP—6) «— PC,
SP «— SP — 6,
IE <0,
BRK « 0,
PS « (003H, 002H),
PC « (001H, 000H)
All other times:
DW « temp % reg16, AW « temp -+ reg16

Divides (using signed division) the contents of the DW
and AW 16-bit register pair by the contents of the 16-bit
register specified by the operand. The quotient is stored
in the AW 16-bit register, while the remainder, if any, is

stored in the DW register. The maximum value of a pos-
itive quotient is +32,767 (7FFFH) and the minimum value
of a negative quotient is —32,767 (8001H). When the
quotient is greater than either maximum value(s), the
quotient and remainder become undefined, and the vec-
tor 0 interrupt is generated. This especially occurs when
the divisor is 0. A fractional quotient is rounded off. The
remainder will have the same sign as the dividend.

Bytes: 2
Transfers: None
Flag operation:

) S Z | AC P CcY
U U U U U U

Example:
MOV DW,0123H
MOV AW,4567H
MOV CW,1000H
DIV cw

;AW = 1234H, DW = 0567H

14.61

wPD70320/322

NEC

DIV mem16
Divide signed, 16-bit memory

0
T T T T T T T
1 1 1 0 1 1 1 —[

m’od N 1 [1 I 1 ']memf]
-]
|

7
[
|
L]] f(displ;-low)!
[T T

temp «— DWAW

When temp <+ (mem16) >0 and temp -+ (mem16) < 7FFFH
or temp + (mem16) < 0 and temp + (mem16) >
0-7FFFH-1:

(SP—1,SP—2) «— PSW,
(SP—3,SP—4) « PS,
(SP—5,SP—6) «— PC,
SP «— SP — 6,
IE <0,
BRK «— 0,
PS «— (003H, 002H),
PC « (001H, 000H)
All other times:
DW <« temp % (mem16), AW « temp -+ (mem16)

T T T
(disp-high)

Divides (using signed division) the contents of the DW
and the AW 16-bit register pair by the contents of the
16-bit memory location specified by the operand. The
quotient is stored in the AW 16-bit register, while the

remainder, if any, is stored in the DW register. The max-
imum value of a positive quotientis +32,767 (7FFFH), and
the minimum value of a negative quotient is —32,767
(8001H). When the quotient is greater than either max-
imum value(s), the quotient and remainder become unde-
fined and the vector O interrupt is generated. This
especially occurs when the divisor is 0. A fractional quo-
tient is rounded off. The remainder will have the same
sign as the dividend.

Bytes: 2/3/4
Transfers: 1

Flag operation:

\ S Z | AC P cY
U U U U U U

Example:
MOV Dw,0
MOV AW, —34
MOV [y}, —2
DIV [IY]

AW =17, DW =0

14.62

NEC

pPD70320/322
BCD ADJUST ADJ4A (no operand)
ADJBA (no operand) Adjust Nibble Add
Adjust byte add 7 0
7 0 o o 1 o o 1 1 1|
o o 1 10 11 1]

Adjusts the result of unpacked decimal addition stored
inthe AL register into a single unpacked decimal number.
The higher 4 bits become zero.

When AL AND OFH > 9 or AC=1:
AL «— AL + 6,
AH «— AH + 1,
AC «— 1,
CY «— AC,
AL «— AL AND OFH
Bytes: 1
Transfers: None

Flag operation:

\ S z AC | P cYy
U U U X v X

Example: ADJBA

14.63

When AL AND OFH < 9 or AC=1:
AL «— AL + 6,
CY « CYORAC,
AC «— 1
When AL > 9FH or CY=1:
AL «— AL + 60H,
CY —1

Adjusts the result of packed decimal addition stored in
the AL register into a single packed decimal number.

Bytes: 1
Transfers: None

Flag operation:

Vs z|AC| P |CY
X | X | X

|

Example: ADJ4A

uPD70320/322
ADJBS (no operand) ADJ4S (no operand)
Adjust byte subtract Adjust nibble subtract
7 0 7 0
T T T T T T

When AL AND OFH > 9 or AC=1:

AL «— AL — 6,
AH «— AH — 1,
AC «— 1,
CY «— AC,

AL «— AL AND OFH

Adjust the result of unpacked decimal subtraction stored
inthe AL register into a single unpacked decimal number.
The higher 4 bits become zero.

Bytes: 1
Transfers: None

Flag operation:

\) S Z | AC P | CY
U U U X U X

Example: ADJBS

14.64

When AL AND OFH > 9 or AC=1:
AL — AL — 6,
CY «— AC ORCY,
AC «1,
When AL > 9FH or CY=1:
AL «— AL — 60H,
CY «—1

Adjusts the result of packed decimal subtraction stored
in the AL register into a single packed decimal number.
Bytes: 1
Transfers: None

Flag operation:

v S Z | AC P CcY
s} X X X X X

Example: ADJ4S

N E C uPD70320/322

DATA CONVERSION CVTDB (no operand)

CVTBD (no operand) Convert decimal to binary

Convert binary to decimal 7 0
T T T T T T

7 0 |110101oT1‘
(17170 170" 170 o]

|o'o‘olor1(o’1'oj

AL < AH X 0AH + AL

AH «— AL = 0AH AH -0

AL «— AL ..% OAH Converts a two-digit unpacked decimal number in the
AH and AL registers into a single 16-bit binary number.
The value in the AH is multiplied by 10. The product is
added to the contents of the AL registér and the result
The quotient of AL divided by 10 is stored in the AH is stored in AL. AH becomes 0.

register. The remainder of this operation is stored in the Bytes: 2

Converts the binary 8-bit value in the AL register into a
two-digit unpacked decimal number.

AL register.
register Transfers: None
Bytes: 2)
Flag operation:
Transfers: None
Flag operation: \ S 4 AC P CcY

U X X U X u

\ S Z | AC P cYy
U X X U X U Example: CVTDB

Example: CVTBD

14.65

pPD70320/322

NEC

CVTBW (no operand)
Convert byte to word
0

CVTWL (no operand)
Convert word to long word
0

o |

7
T T T T T T T
L 1 0 0 1 1 0 0

]

7
T T I T T T I
l1 0 0" 171" 0 o

When AL < 80H:
AH «—0

All other times
AH « FFH

Expands the sign of the byte in the AL register to the AH
register. Use this instruction to produce a double-length
(word) dividend from a byte before a byte division is
performed.

Bytes: 1

Transfers: None
Flag operatian: None

Example: CVTBW

When AW < 8000H:
DW « 0

All other times :
DW <« FFFFH

Expands the sign of the word in the AW register to the
DW register. Use this instruction to produce a double-
length (double-word) dividend from a word before a word
division is performed.

Bytes: 1

Transfers: None
None

Example: CVTWL

Flag operation:

14.66

NEC

pPD70320/322
COMPARISON CMP mem,reg
CMP reg,reg Compare memory and register
Compare register and register 7 : . ; : 0
7 0 (o 0 1 1 1 o o w |
T T T T
{ 0 0 1 1 1 0 1 w } T T T T T T T
[mod reg mem J
T T T T T T
1 1 re re T T T T
I 9 9 1 l ‘ ‘ (disp-low) ‘]
reg —reg T T T T T
] (disp-high)]

Subtracts the contents of the 8- or 16-bit register spec-
ified by the second operand from the contents of the 8- or
16-bit register specified by the first operand. The result
is not stored and only the flags are affected.

Bytes: 2
Transfers: None

Flag operation:

vIislz A P]cY
X X X | X [X X
Example:

CMP AWBW

CMP CHDL

(mem) — reg

Subtracts the contents of the 8- or 16-bit register spec-
ified by the second operand from the 8- or 16-bit memory
contents addressed by the first operand. The resultis not
stored and only the flags are affected.

Bytes: 2/3/4
Transfers: 1

Flag operation:

V] s[zZ]A]P oY
X 1 X X X X X
Example:

CMP WORD_VAR,IX

CMP BYTE_VARCL

CMP [BW]AH

14.67

wPD70320/322

NEC

CMP reg,mem
Compare register and memory
7

CMP reg,imm
Compare register and immediate data
7

0
T T T T T T T
, 0 0 1 1 1 0 1 w

0
1 0 0 0 0 0 S w

| |
L mlod ' ’ reg I ' lmemI l [1 I 1 ' 1 ' 1 I 1 I [reg I J
| " (disp-low) ' | [] imm8 or imm16-low L]
| " (disp-high)"] [" imm16-high "]

Subtracts the 8- or 16-bit memory contents addressed
by the second operand from the contents of the 8- or
16-bit register specified by the first operand. The result
is not stored and only the flags are affected.

reg — (mem)
Bytes: 2/3/4
Transfers: 1
Flag operation:

\) S Z | AC P | CY
X X X X X X

Example:
CMP AW[IX]
CMP CH,BYTE_VAR

14.68

reg — imm

Subtracts the 8- or 16-bit inmediate data specified by
the second operand from the contents of the 8- or 16-bit
register specified by the first operand. The resuit is not
stored and only the flags are affected.

Bytes: 3/4

Transfers: None

Flag operation:

\ S Z | AC P CY
X X X X X X

Example:
CMP BL,5
CMP DW,1200H

NEC

wPD70320/322

CMP mem,imm

Compare memory and immediate data

CMP acc,imm

Compare accumulator and immediate data

T T T
imm8 or imm16-low

Subtracts the 8- or 16-bit immediate data specified by
the second operand from the accumulator (AL or AW)
specified by the first operand. The resultis not stored and

U 0 7 ‘ ‘ 0
770 0 o0 o o' s ' w] [0 0o 111" 0" w]
| m‘od ‘ 1] 1 ‘ 1 i [memr I l ’ " imm8 or iImm16-‘|ow ‘ ' l
l T T T T T T T T — T ==

(disp-low) ‘ I imm16-high ’ o
[e]SRN e
[]

T T T
imm16-high

(mem) — imm

Subtracts the 8- or 16-bit immediate data specified by
the second operand from the 8- or 16-bit memory con-
tents addressed by the first operand. The result is not
stored and only the flags are affected.

Bytes: 3/4/5/6
Transfers: 1
Flag operation:

\ S 4 AC P (034
X X X X X X

Example:
CMP BYTE PTR [BW],3
CMP WORD_VAR,7000H

only the flags are affected.
Bytes: 2/3
Transfers: None

Flag operation:

VISJTZJ[AC] P]CY
xx}xxxx

Example:
CMP AL,0
CMP AW,800H

14.69

pPD70320/322
COMPLEMENT OPERATION NOT mem
NOT reg Not memory
Not register 7 : , : : . 1 | 0
7 0 l 1 1 1 1 0 1 1 w j
T T — 1 T T T T
KRR —— 1
| mod o 1 o0 mem]
T T T T T T T
[1 1 0 1 0 reg] T T 1 T T
l (disp-low) J
reg «— fég [T T il j

Inverts (by performing a 1's complement) each bit of the
8- or 16-bit register specified by the operand and stores
the result in the specified register.

Bytes: 2
Transfers: None
Flag operation: None

Example:
NOT BW
NOT CL

" (disp-high)"

(mem) «— (mem)

Inverts (by performing a 1's complement) each bit of the
8- or 16-bit memory location addressed by the operand
and stores the result in the addressed memory location.
Bytes: 2/3/4
Transfers: 2

Flag operation: None

Example:
NOT
NOT

WORD_VAR[IX](2]
BYTE PTR [IY]

14.70

N E C uPD70320/322

Takes the 2's complement of the contents of the 8- or
16-bit register specified by the operand.

T T

NEG reg NEG mem
Negate register Negate memory
7 0 7 0
r T T T T T T T T T T T T T T
1 1 1 1 0 1 1 w 1 1 1 1 0 1 1 w
I
T T i T T T T T T T T T T i
! 1 1 0 1 1 reg l l mod 0 1 1 mem l
- T T T T T
reg «——reg + 1 ‘ (disp-low) J

i T T T
" (disp-high)]

(mem) «— (mem) + 1

Bytes: 2

Transfers: None
Takes the 2's complement of the 8- or 16-bit memory
contents addressed by the operand.

Bytes: 2/3/4

Flag operation:

\ S Z AC P Cy*
X X X

X X 1 Transfers: 2

!
E

Flag operation:
Note: * = 0 if the contents of the operand register is 0.

Example: v l S I 4 IAC P *CY*
X | X \ X | X X |1
NEG BL | \
NEG AW

Note: * = 0 if the contents of the memory operand is 0.

Example:
NEG WORD_VAR
NEG BYTE PTR [BW][IX]

14.71

NEC

uPD70320/322
LOGICAL OPERATION TEST mem,reg or TEST reg,mem
TEST reg,reg Test register and memory

Test register and register

7

T T T T T

0
T T
1 0 0 0 0 1 0 w J

7 0
T
1 0 0 0 0o 1 0w

T T T T T T T

i [mod reg mem T
T T T T T L T

[1 1 reg reg l ' T T " dispiow) " T T —I

reg AND reg T T T T

ANDs the contents of the 8- or 16-bit register specified ‘ (disp-high)]

by the first operand and the 8- or 16-bit register specified
by the second operand. The result is not stored and only
the flags are affected.

Bytes: 2
Transfers: None

Flag operation:

\ S Z | AC P (934

-

0 X X U X 0

Example:
TEST AWCW
TEST CL,AH

14.72

(mem) AND reg

ANDs the contents of the 8- or 16-bit second operand
and the contents of the 8- or 16-bit first operand.

The result is not stored and only the flags are affected.
Bytes: 2/3/4

Transfers: 1

Flag operation:

vV | § Z AC P CcY
0 X X U X 0

Example:
TEST BYTE_VAR,DL
TEST AH, [IX]

NEC

pPD70320/322

TEST reg,imm
Test immediate data and register

TEST mem,imm
Test immediate data and memory

reg AND imm

ANDs the contents of the 8- or 16-bit register specified
by the first operand and the 8- or 16-bit immediate data

T T T
imm8 or imm16-low

7 0 7 0
e T w] e
17170 0" 0 reg | [md "o 0o o Cmem |
| "7 imm8orimmi6-iow ' | T T (disprlow) |]
| "immi6-high | | " (disp-high) ' |
l
]

specified by the second operand. The result is not stored
and only the flags are affected.

Bytes: 3/4
Transfers: None

Flag operation:

v S 4 AC P CcYy
0 X X U X 0

Example:
TEST CW]i1
TEST AL,50H

{
L T
l
[

T T T
imm16-high

(mem) AND imm

ANDs the 8- or 16-bit memory contents addressed by the
first operand and the 8- or 16-bit immediate data spec-
ified by the second operand. The result is not stored and
only the flags are affected.

Bytes: 3/4/5/6
Transfers: 1
Flag operation:

VIis[z[aAa]P oy
0 | X] X | U [X [o
Example:

TEST BYTE PTR[BW],80H
TEST WORD_VAR,00FFH

14.73

NEC

uPD70320/322
TEST acc,imm AND reg,reg
Test immediate data and accumulator AND register with register to register
7 0 7 0
T T T 1 T T T T T T T
b 0 I 1 I 0 1 0 0 w I I 0 0 1 0 0 0 1 W—l
T T T T
L ’ im}ns or i]mm16-low I l [1 1 I I reg [l reg []

T T
" imm16-high

When W=0: AL AND imm8
When W=1: AW AND imm16

ANDs the contents of the accumulator (AL or AW) spec-
ified by the first operand and the 8- or 16-bit immediate
data specified by the second operand. The result is not
stored and only the flags are affected.

Bytes: 2/3

Transfers: None

Flag operation:

\" S Z |AC| P | CY

0 X X U X 0
Example:

TEST AL,12H

TEST AW,8000H

reg < reg AND reg

ANDs the contents of the 8- or 16-bit register specified
by the first operand and the contents of the 8- or 16-bit
register specified by the second operand. Stores the
result in the register specified by the first operand.

Bytes: 2
Transfers: None
Flag operation:

\ S Z | AC P CcY
0 X X U X 0

Example: AND IX,AW

14.74

NEC

uPD70320/322

AND mem,reg
AND memory with register to memory

AND reg,mem
AND register with memory to register

7 0 7 0
o "o 170 "0 0 o w]|] [o"0o 1 0o o o 1 w]
| mod | "reg ' "mem | [mod T reg mem |
| disp-low) | [(disp-low) ’ ’
[" (disp-high)' ‘ | [" (disp-high)’]

(mem) « (mem) AND reg

ANDs the 8- or 16-bit memory contents addressed by the
first operand and the contents of the 8- or 16-bit register
specified by the second operand. Stores the result in the
memory location addressed by the first operand.

Bytes: .2/3/4
Transfers: 2

Flag operation:

V| s | zTJla]P]JcY
0 X X | U X IL 0
Example:

AND [BW]IX]3.AL

AND WORD_VARCW

reg «— reg AND (mem)

ANDs the contents of the 8- or 16-bit register specified
by the first operand and the 8- or 16-bit memory contents
addressed by the second operand. Stores the resuit in
the register specified by the first operand.

Bytes: 2/3/4
Transfers: 1

Flag operation:

V]is]z]A]| P oY
o[x xJulxlo
Example:

AND CLBYTE_VAR

AND DW(i]

14.75

WPD70320/322

NEC

AND reg,imm
AND register with immediate data to register

AND mem,imm
AND memory with immediate data to memory

7 0 7 0
T T T T T T T T T T T T T T
170 0 0 o 0" o"w] [170 "0 0" 0" "0" 0" w|
T T T T T T T T T T T T T T
l 1 1 1 0 0 reg l L mod 1 0 0 mem]
T T T T T T T il T T T T
[imm8 or imm16-low J | (disp-low) |
T T T T T T T T T T T
[imm16-high | (disp-high) |
eg «— reg AND imm T i ! ! f
reg €g L imm8 or imm16-low |
ANDs the contents of the 8- or 16-bit register specified
by the first operand and the 8- or 16-bit immediate data l I ' imm1I6-high] J

specified by the second operand. Stores the result in the
register specified by the first operand.

Bytes: 3/4
Transfers: None

Flag operation:

Vv S 4 AC P cYy

0 X X U X 4]
Example:

AND CL,0FEH

AND DW,14H

14.76

(mem) <« (mem) AND imm

ANDs the 8- or 16-bit memory contents addressed by the
first operand and the 8- or 16-bit immediate data spec-
ified by the second operand. Stores the result in the
memory location addressed by the first operand.

Bytes: 3/4/5/6

Transfers: 2

Flag operation:

v S Zz AC P cY
0 X X U X 0

Example:
AND BYTE PTR [IY],30H
AND [1Y],3000H

NEC

uPD70320/322

AND acc,imm
AND accumulator with immediate data to accumulator
7 0

OR reg,reg
OR register and register to register

T T T T T I w l

T T T T T

7 0
o 0o 0 0o 1 o 1 w|

[0!0 1 0o 0 1 0
I T T T T

|
[1I1T rfegl T IregI l

T T
imm8 or imm16-low
(T

When W=0: AL « AL AND imm8
When W=1. AW « AW AND imm16

ANDs the contents of the accumulator (AL or AW) spec-
ified by the first operand and the 8- or 16-bit immediate
data specified by the second operand. Stores the result
in the accumulator specified by the first operand.

Bytes: 2/3

T T
[imm16-high

Transfers: None
Flag operation:

\ S Z AC P CcY
0 X X U X 0

Example:
AND AL,80H
AND AW,0FH

reg «— reg OR reg

ORs the contents of the 8- or 16-bit register specified by
the first operand and the contents of the 8- or 16-bit
register specified by the second operand. Stores the
result in the register specified by the first operand.
Bytes: 2

Transfers: None

Flag operation:

\' S Z | AC P cY
0 X X U X 0

Example:
OR AL,AH
OR BW,CW

14.77

wPD70320/322 N E C

OR mem,reg OR reg,mem
OR memory and register to memary OR register and memory to register
7 0 7 0
T T T T T T T T T T T T T T
o "0 0 0" 170" 0 "w] [o 0o 0o 0" 1T 0T 1T w]|
T T 1 T B T T T T T T T T
l mod reg mem l | mod reg mem]
T T T T T T T T T T T T T
l (disp-low) I I (disp-low) j
T T T T T T T T T T T T T T
(disp-high) T | (disp-high) [
(mem) «— (mem) OR reg reg «— reg OR (mem)

ORs the 8- or 16-bit memory contents addressed by the ~ ORs the contents of the 8- or 16-bit register specified by
first operand and the contents of the 8- or 16-bit register the first operand and the 8- or 16-bit memory contents
specified by the second operand. Stores the resultinthe addressed by the second operand. Stores the result in

memoxy location addressed by the first operand. the register specified by the first operand.
Bytes: 2/3/4 Bytes: 2/3/4
Transfers: 2 Transfers: 1
Flag operation: Flag operation:

Vv S Z | AC P cY Vv S 4 AC P CcYy

0 X X U X 0 0 X X U X 0
Example: Example

OR BYTE_VARCL OR CL,[IX]

OR WORD_VAR [BP] AW OR CWWORD_VAR

14.78

NEC

uPD70320/322

OR reg,imm

OR register with immediate data to register

OR mem,imm
OR memory with immediate data to memory

‘1!0TOJOI0!

0
T T
0 0 W

reg — reg ORimm

T T

R |‘m‘od’o’o‘1T mem'
T T T T T T

l imm8 or imm16-low {

| " Timmi6-high |77 (disp-high)’ '

ORs the contents of the 8- or 16-bit register specified by
the first operand and the 8- or 16-bit immediate data
specified by the second operand. Stores the result in the

register specified by the first operand.

Bytes: 3/4
Transfers: None

Flag operation:

V]IsJ[z]Aa]P]cy
0 X 1 X ,ru X 0
Example:

OR CL,80H

OR AWOFH

1 T T
imm8 or imm16-low

|
|
(disp-low) J
|
|
|

RN l T
" imm16-high

(mem) < (mem) OR imm

ORs the 8- or 16-bit memory contents addressed by the
first operand and the 8- or 16-bit immediate data spec-
ified by the second operand. Stores the result in the
memory location addressed by the first operand.

Bytes: 3/4/5/6
Transfers: 2

Flag operation:

VIsTzJA] P Tcy
0 X X | U X lL 0
Example:

OR BYTE_VAR,2
OR WORD PTR [IX],0FH

14.79

wPD70320/322

NEC

OR acc,imm
OR accumulator with immediate data to accumulator
0
T

XOR reg,reg
Exclusive OR, register and register to register

7
T T T T T T
L 0 0 0 0 1 1 0 w

T T T T T

T T T
imm8 or imm16-low

7 0
T

o 0" 171700 1 T w
T T

[11 reg reg

T T I T T]

L -]
T T T T

I imm16-high l

When W=0: AL « AL ORimm8

When W=1: AW «— AW OR imm16

ORs the contents of the accumulator (AL or AW) specified
by the first operand and the 8- or 16-bit immediate data
specified by the second operand. Stores the result in the
accumulator specified by the first operand.

Bytes: 2/3
Transfers:

None
Flag operation:

\ S Z | AC P | CY
0 X X U X 0

Example:
OR AL,34H
OR AW,1

14.80

reg «— reg XOR reg

XORs the contents of the 8- or 16-bit register specified
by the first operand and the 8- or 16-bit register specified
by the second operand. Stores the result in the register
specified by the first operand.

Bytes: 2
Transfers: None

Flag operation:

\ S Z | AC P cY
0 X X U X 0

Example:
XOR ALAH
XOR cwBw

N E C wPD70320/322

XOR mem,reg XOR reg,mem

Exclusive OR, memory and register to memory Exclusive OR, register and memory to register

7 0
o 0717170 0 0" w] |
I T T T T T T T T T T T T T T
mod reg mem , I mod reg mem]
T T T T T T T T T T T T
’ (disp-low) I [(disp-low)]
T T T T T T T T T
l (disp-high)] [(disp-high) J
(mem) < (mem) XOR reg reg <« reg XOR (mem)

XORs the 8- or 16-bit memory contents addressed by the XORs the contents of the 8- or 16-bit register specified
first operand and the contents of the 8- or 16-bit register by the first operand and the 8- or 16-bit memory contents
specified by the second operand. Stores the resultinthe addressed by the second operand. Stores the result in

memory location addressed by the first operand. the register specified by the first operand.
Bytes: 2/3/4 Bytes: 2/3/4
Transfers: 2 Transfers: 1
Flag operation: Flag operation:

\ S Z AC P cY v S z AC P cY

0 X X U X 0 0 X X V] X 0
Example Example

XOR [BW],CL XOR BH,[IX]

XOR WORD_VAR,BP XOR AWWORD_VAR

14.81

NEC

uPD70320/322
XOR reg,imm XOR mem,imm
Exclusive OR, register with immediate data to register
7 0 Exclusive OR, memory with immediate data to memory
I 1 0 o' 0 o' o o' w ' ! T T T T T T T o
170" 07070 0 0" w|
L1 T ; T ; T] T s T [reg T |

T T T
imm8 or imm16-low

|
[" Timmte-high | |

reg «— reg XOR imm

XORs the contents of the 8- or 16-bit register specified
by the first operand and the 8- or 16-bit immediate data
specified by the second operand. Stores the result in the
register specified by the first operand.

Bytes: 3/4
Transfers: None

Flag operation:

\Y% S Z |[AC| P | CY
0 X X u X 0

Example
XOR CL,2
XOR IX,0FFOOH

T T T T I T
mem

| mod 11 o

——

T T T
imm8 or imm16-low

T T T T
imm16-high |

T T T T T
l (disp-low)

T T T
L (disp-high)

(mem) < (mem) XOR imm

XORs the 8- or 16-bit memory contents addressed by the
first operand and the 8- or 16-bit immediate data spec-
ified by the second operand. Stores the result in the
memory location addressed by the first operand.

Bytes: 3/4/5/6
Transfers: 2
Flag operation:

v S 4 AC P (934
0 X X V] X 0

Example:
XOR BYTE PTR [IY],0FH
XOR WORD_VAR,0FH

14.82

NEC

uPD70320/322

XOR acc,imm

Exclusive OR, accumulator with immediate data to
accumulator

7 0

|o‘o"1 1 011‘o‘rw]

i " imm8 or imm16-low) '
-
XORs the contents of the accumulator (AL or AW) spec-
ified by the first operand and the 8- or 16-bit immediate

data specified by the second operand. Stores the result
in the accumulator specified by the first operand.

When W=0: AL « AL XOR imm8
When W=1: AW « AW XOR imm16

Bytes: 2/3
Transfers:

T T T T 1
‘ imm16-high

None

Flag operation:

Vv]is]zITlA] P]|cCY

0 X X 1 U X 0
Example:

XOR AL,OFFH

XOR AW,8000H

14.83

BIT MANIPULATION
TEST1 reg8,CL
Test bit CL of the 8-bit register

7 0
‘o o o o0 1 11 l
EE o 1 o o o o |
!1 1‘010 0‘ ‘reg‘ J

When bit CL of reg8=0: Z « 1
When bit CL of reg8=1: Z «— 0

Sets the Z flag to 1 when bit CL of the 8-bit register
(specified by the first operand) is 0. Resets the Z flag to
0 when bit CL is 1. Only the lower 3 bits of CL are used
to address the bit.

Bytes: 3
Transfers: 1

Flag operation:

VIis [zZJ[A] P cCY
0 U/ Xx U U o
Example: TEST1 AL,CL

uPD70320/322

TEST1 mem8,CL
Test bit CL of the 8-bit memory

TEST1 reg16,CL
Test bit CL of the 16-bit register

T
o 0 0" 170" 0" 0" 1]
I T I I T T T T T T T T T
] mod] 0 0 0 mem [1 1 0 0 0 reg I
[F T T disp-low) | ’ ‘ —l When bit CL of reg16 =0: Z « 1
When bit CL of reg16 =1: Z <« 0
[I I (dispy-high)l ' I Sets the Z flag to 1 when bit CL of the 16-bit register

When bit CL of (mem8) = 0: Z «— 1
When bit CL of (mem8) =1:Z «— 0

Sets the Z flag to 1 when bit CL of the 8-bit memory
(addressed by the first operand) is 0. Resets the Z flag
to 0 when the CL bitis 1. Only the lower 3 bits of CL are
used to address the bit.

Bytes: 3/4/5
Transfers: 1
Flag operation:

\ S Z | AC P CcY
0 U X U U 0

Example: TEST1 BYTE PTR [BW],CL

14.84

(specified by the first operand) is 0. Resets the Z flag to
0 when the bit is 1. Only the lower 4 bits of CL are used
to address a bit.

Bytes: 3
Transfers: 1
Flag operation:

\ S 4 AC P CcY
0 U X U U 0

Example: TEST1 AW,CL

N E C uPD70320/322

TEST1 mem16,CL TEST1 reg8, imm3
Test bit CL of the 16-bit memory Test bit imm3 of the 8-bit register
7 0 7
T T T T T T T T
[0 0 0 0 1+ 171 1] [o 070" 0 1" 171" 4]
T T T T T T T T T T T T T T
[0 "0 "0 170 0 0 1] o o0 1 0o o o o]
T T T T T T T T T T T I T
| mda "o o' o mem 17170 0 o reg |
T T T T T
| l [imm3 ‘

|

T T T T T
(disp-low) I
|

When bitimm3 of reg8 =0: Z « 1
When bitimm3ofreg8 =1: Z «0

When bit CL of (mem16) =0: Z « 1 Sets the Z flag to 1 when bit imm3 of the 8-bit register
When bit CL of (mem16) =1: Z <« 0 (specified by the first operand) is 0. Resets the Z flag to

The first operand specifies the 16-bit memory location g:t'ahea:eﬂles:g ;Zzag:tli)f;ﬂ;e;ic;wers bits of the immediats
and the second operand (CL) specifies the bit position.

When the bit specified by CL is 0, the Z flag is set to 1. Bytes: 4

When that bit is 1, the Z flag is reset to 0. Only the lower
4 bits of CL are used to address a bit.

T T T
(disp-high)

Transfers: None
Flag operation:

Bytes: 3/4/5

Transfers: 1 Vv S z AC P CY

Flag operation: 0 U X U U 0
\) S Z AC P cY Example: TEST1 BH,1

0 U X U V] 0

Example: TEST1 WORD PTR [BW],CL

14.85

uPD70320/322 N E C

TEST1 mem8,imm3 TEST1 reg16, imm4
Test bit imm3 of the 8-bit memory Test bit imm4 of the 16-bit register
7 0 7 0
T T T T T T T T T T T T T T
I 0 0 0 0 1 1 1 1] l 0 0 0 0 1 1 1 l
T T T T T T T T T T T T T T
l 0 0 0 1 1 0 0, 0 l LO 0 0 1 1 0 0 1 I
T T T T T T T T T T T T T
I mod 0 0 0 mem | I 1 ' 1 0 0 0 reg l
T T T T T T T T T T T
{ (disp-low) |] imma |
I ' ' (disp‘-high)] T l When bit !mm4 ofregl6=0: Z <1
When bitimm4 of reg16=1: Z <0
‘ ‘ ' imlma T [] The first operand specifies the 16-bit register and the
second operand (immd) specifies the bit position. When
When bit imm3 of (mem8) =0: Z « 1 the big speciﬁed by imrp4 is 0,the Z flag is set to 1. Wh_en
When bit imm3 of (mem8) =1: Z «— 0 that bitis 1, the Z flag is reset to 0. Only the lower 4 bits
of the immediate data are used to address a bit.
The first operand specifies the 8-bit memory location and Bytes: 4

the second operand (imm3) specifies the bit position.
When the bit specified by imm3 is 0, the Z flag is setto ~ Transfers: None
1. When thatbitis 1, the Z flag is reset to 0. Only the lower

Flag operation:
3 bits of the immediate data are used to address a bit. 9 op

\ S Z | AC P CY

Bytes: 4/5/6 0 U X U U 0
Transfers: 1
Flag operation: Example: TEST1 AW,15

Vv S Z |AC| P | CY
0 U X U U 0

Example: TEST1 BYTE_VAR,5

14.86

NEC

uPD70320/322

TEST1 mem16,imm4
Test bit imm4 of the 16-bit memory

NOT1 reg8,CL
Not bit CL of the 8-bit register

T T T] T

7
0 0 0 0 1 1 1 1

T T T
mod 0 0 0

{ |
| o o o 1T T o0 1]
l

! (disp-low)

When bitimm4 of (mem16) =0: Z «— 1
When bitimm4 of (mem16) =1: Z <0

The first operand specifies the 16-bit memory and the
second operand (imm4) specifies the bit position. When
the bit specified by imm4 is 0, the Z flag is set to 1. When
that bit is 1, the Z flag is reset to 0. The immediate data
in the last byte of the instruction is valid only for the lower
4 bits.
Bytes: 4/5/6
Transfers: 1

Flag operation:

V]isJ]zZJAa]P]oy
0o U xJululo

Example: TEST1 WORD PTR [BP),8

Bit CL of reg8 « bit CL of reg8

The CL register (second operand) specifies which bit of
the 8-bit register (specified by the first operand) is to be
inverted. Only the lower 3 bits of the CL register are used.

Bytes: 3

Transfers: None
Flag operation: None
Example: NOT1 BH,CL

14.87

uPD70320/322

NOT1 mem8,CL
Not bit CL of the 8-bit memory

NOT1 reg16, CL
Not bit CL of the 16-bit register

T T T T T T T
o 0o 0 0 v "1 T Tl ool o o T T T]
T T T T T T T T T T T T T T
o o0 "o 170" 17170] [o' 0o 0o "1 0" 1T 1T 1]
T T T T T T T T T T T T T T
[mod (o] 0 0 mem | [1 1 0 0 0 reg]
T T T T ; Ol of reaE
I T (disp-low) | l Bit CL of reg16 «— bit CL of reg16
The CL register (second operand) specifies which bit of
| T T ' (displ-high)[' | the 16-bit register (specified by the first operand) is to

Bit CL of (mem8) « bit CL of (mem8)

The CL register (second operand) specifies which bit of
the 8-bit memory location (specified by the first operand)
is to be inverted. Only the lower 3 bits of the CL register
are used.

Bytes: 3/4/5

Transfers: 2

None
BYTE_VAR,CL

Flag operation:
Example: NOT1

14.88

be inverted. Only the lower 4 bits of the CL register are
used.

Bytes: 3

Transfers: None

Flag operation: None
Example: NOT1 AW,CL

NEC

uPD70320/322

NOT1 mem16,CL
Not bit CL of the 16-bit memory

NOT1 reg8,imm3
Not bit imm3 of the 8-bit register
7 0

0 0 0 0 1 1 1

Bit CL of (mem16) « bit CL of (mem16)

The CL register (second operand) specifies which bit of
the 16-bit memory location (addressed by the first oper-
and) is to be inverted. Only the lower 4 bits of the CL
register are used.

Bytes: 3/4/5

Transfers: 2

Flag operation: None

Exampie: NOT1 WORD_VAR,CL

14.89

|
| | { o o 0 1 1 1 1 0 l
| md "o o' o' = mem | [+ 170 0 o g ’
] b " (disp-low) b j [imms ‘ ']
L T " (disp-high)' ' l Bit imm3 of reg8 « bit imm3 of reg8

Bitimm3 (second operand) specifies which bit of the 8-bi
register (specified by the first operand) is to be inverted
Only the lower 3 bits of the immediate data at the fourtt
byte of the instruction are used.

Bytes: 4

Transfers: None
None

AH,3

Flag operation:
Example: NOT1

uPD70320/322

NOT1 mem8,imm3
Not bit imm3 of 8-bit memory

NOT1 reg16,imm4

Not bit imm4 of the 16-bit register

7 0 7 0
T T T T T T T T T T T T T T
o 0o 0o 0o 1 1"] Jo"ToTo "o T T T]
T T T T T I T T T T T T T T
o "o 0 "1 1T T T o] [oTo o i T T T T]
T T T T T T T T T T T I T T
{ mod 0 0 0 mem l { 1 1 0 0 0 reg I
T T | T T T T T T T I T
| (disp-low) I | imm4 J
(" (disp-high) | Bit imm4 of reg16 «— bitimm4 of reg16
Bit imm4 (second operand) specifies which bit of the
l ‘ ‘ imm3 | ‘ ‘ | 16-bit register (specified by the first operand) is to be

Bit imm3 of mem8 <« bit imm3 of mem8

Bitimm3 (second operand) specifies which bit of the 8-bit
memory location (addressed by the first operand) is to
be inverted. Only the lower 3 bits of the immediate data
are used in the last byte of the instruction.

Bytes: 4/5/6

Transfers: 2

Flag operation: None

Example: NOT1 BYTE PTR [BW][IX]34H,4

14.90

inverted. Only the lower 4 bits of the immediate data are
used in the fourth byte of the instruction.

Bytes: 4

Transfers: None

Flag operation: None
Example: NOT1 BW,15

N E C uPD70320/322

NOT1 mem16,imm4 NOT1 CY
Not bit imm4 of the 16-bit memory Not carry flag
7 0 7 0
T T T T T T T T T T
Lo o 0o o 11T] [T 010

T T T T T —_
o o o 1 111 4] oret
T T - . 1 Inverts the CY flag.
| mod o o o mem ‘ Bytes: 1

I T Transfers: None
' (disp-low)]

Flag operation:
Bit imm4 of (mem16) «— bit imm4 of (mem16)

S Z AC P cYy
U U U U X

The bitimm4 (second operand) specifies which bit of the v
16-bit memory location (addressed by the first operand) v
is to be inverted. Only the lower 4 bits of the immediate
data are used in the last byte of the instruction. Example: NOT1 CcY
Bytes: 4/5/6

Transfers: 2

Flag operation: None
Example: NOT1 WORD_VAR,0

14.91

pPD70320/322

CLR1 reg8,CL
Clear bit CL of the 8-bit register

CLR1 mem8,CL
Clear bit CL of the 8-bit memory

7 0 7 0
T T T T T T T T T T T T T I
o0 0 0" 1T 1 1] lo' o 0 0 1T 11"y
T T T T T L T T T T T T T T
o "0 0o 1 0 o 1 o] [o o0 0" 10" "0 170
T T T T T T T
I1 1 0 0 0 reg]

Bit CL of reg8 «— 0

Clears the bit specified by CL of the 8-bit register (spec-
ified by the first operand) to 0. Only the lower three bits
of CL are used.

Bytes: 3

Transfers: None

None
ALCL

Flag operation:

Example: CLR1

14.92

T T
(disp-low)

L T T
L T
Bit CL of (mem8) « 0

Clears the bit specified by CL of the 8-bit memory loca-
tion (addressed by the first operand) to 0. Only the lower
three bits of CL are used.

Bytes: 3/4/5
Transfers: 2

T T T
(disp-high)

|
|
| md "o 0o o' mem]
|
I

None
BYTE_VAR,CL

Flag operation:
Example: CLR1

NEC

uPD70320/322

CLR1 reg16,CL
Clear bit CL of the 16-bit register

CLR1 mem16,CL
Clear bit CL of the 16-bit memory

7 0 7 0
T T I T T T T T T T
lo 070 o 171 17 1] [o o 0 0 111" 4]
T T T T T T T T T T
lo o070 1+ 7070 171] o 0o 0 170 o' 1" 4]
T T T T T T T T
L1 ! 17 0 I 0 ! 0 ' reg] [mod 0 0 0 mem J
Bit CL of reg16 «— 0 [7 " (disp-low) T
Clears the bit specified by CL of the 16-bit register (spec- . l ; ; [
ified by the first operand) to 0. Only the lower four bits [‘ (disp-high) '

of CL are used.

Bytes: 3

Transfers: None

Flag operation: None
Example: CLR1 AW,CL

Bit CL of (mem16) « 0O

Clears the bit specified by CL of the 16-bit memory loca-
tion (addressed by the first operand) to 0. Only the lower
4 bits of CL are used.

Bytes: 3/4/5

Transfers: 2

Flag operation: None

Example: CLR1 WORD_VAR,CL

14.93

WPD70320/322

CLR1 reg8,imm3
Clear bit imm3 of the 8-bit register

NEC

Clear bit imm3 of the 8-bit memory
7

0 0 0 0 1 1 1

T T T T T T T T T T T T T T
[+ 170" 0" o0 reg | | mod o o0 o mem]
T T T T T T T T T T T
| imm3 l l (disp-low)]
Bit imm3 of reg8 «— 0 [K ! T (dispr-high)I] } '
Clears the bit specified by the 3-bit immediate data . .
(second operand) of the 8-bit register (specified by the [' T in{ma I

first operand) to 0. Only the lower 3 bits of the immediate
data are used in the fourth byte of the instruction.

Bytes: 4
Transfers: None
Flag operation: None

Example: CLR1 BH,1

Bit imm3 of (mem8) «— 0

Clears the bit specified by the 3-bit immediate data
(second operand) of the 8-bit memory location
(addressed by the first operand) to 0. Only the lower 3
bits of immediate data are used in the last byte of the
instruction.

Bytes: 4/5/6

Transfers: 2

Flag operation: None

Example: CLR1 BYTE_VAR[BW],6

14.94

NEC

wPD70320/322

CLR1 reg16,imm4

Clear bit imm4 of the 16-bit register

CLR1 mem16,imm4
Clear bit imm4 of the 16-bit memory

7 0 7 0
T T T
o 0 0 o 1 T] o oo o]
T T T T
o o o 1 1 1] Jo o 0 1o 1]
| L
T T T T T T T T T T T
L 1 1 0 0 0 reg ‘ i mod 0 0 0 mem J
T T T T T T T T T
L imm4 i { imm4 |
Bitimm4 of reg16 «— 0 { ! 1 (dispT-high)l T l
Clears the bit specified by the 4-bit immediate data ‘ - ‘ s - ;
(second operand) of the 16-hit register (specified by the ! imm4) J

first operand) to 0. Only the lower 4 bits of the immediate
data are used in the fourth byte of the instruction.

Bytes: 4

Transfers: None
Flag operation:
Example: CLR1

None
CW;5

14.95

Bit imm4 of (mem16) «— 0

Clears the bit specified by the 4-bit immediate data
(second operand) of the 16-bit memory location
(addressed by the first operand) to 0. Only the lower 4
bits of immediate data are used in the last byte of the
instruction.

Bytes: 4/5/6

Transfers: 2

Flag operation: None

Example: CLR1 WORD PTR [BP],0

NEC

uPD70320/322
CLR1 CY CLR1DIR
Clear carry flag Clear direction flag
7 7 0
T T T T T T T T | T
EEERERE 0 | [T T Ty T T T T]
CY«+—0 DIR—0
Clears the CY flag. Clears the DIR flag. Sets index registers IX and IY to
Bytes: 1 autoincrement when MOVBK, CMPBK, CMPM, LDM
STM, INM, and OUTM are executed.
Transfers: None Bytes: 1
Flag operation: Transfers: None
vV S Z I AC cY Flag operation: [DIR_
ujujulu 0
ple: CLR1 DIR Exam
Example: CLR1 cY

14.96

NEC

uPD70320/322

SET1 reg8,CL
Set bit CL of the 8-bit register

SET1 mem8,CL

|000‘01

T T T T T
lr 0 0 0 1 0

T T T 1 T
[+ 170 0 o
Bit CL of reg8 «- 1

Sets the bit specified by CL of the 8-bit register (specified
by the first operand) to 1. Only the lower three bits of CL
are used.

Bytes: 3

Transfers: None

Flag operation: None
Example: SET1 BL,CL

Set bit CL of the 8-bit memory

14.97

Bit CL of (mem8) «— 1

Sets the bit specified by CL of the 8-bit memory location
(addressed by the first operand) to 1. Only the lower three
bits of CL are used.

Bytes: 3/4/5

Transfers: 2

Flag operation. None

Example: SET1 BYTE PTR [BW],CL

uPD70320/322

SET1 reg16,CL
Set bit CL of the 16-bit register

SET1 mem16,CL
Set bit CL of the 16-bit memory

7 0 7 0

T T T T T T T T T

lo o 0o 0o 1 11 1] (o o 0o 0o 1T 1T] |
T T T T T T T T T 1 T T

o o0 0 1 0" 170" 1] o o 0o "1 70" 10" 1]
T T T T T T T T T T T T T T

17170 0o o reg | | mod o 0 o mem |

Bit CL of reg16 «— 1 |7 77 (disp-low)]

Sets the bit specified by CL of the 16-bit register (spec-

ified by the first operand) to 1. Only the lower four bits [T ' (dis;.high)']

of CL are used.

Bytes: 3

Transfers: None

Flag operation: None
Example: SET1 BW,CL

14.98

Bit CL of (mem16) «- 1

Sets the bit specified by CL of the 16-bit memory location
(addressed by the first operand) to 1. Only the lower 4
bits of CL are used.

Bytes: 3/4/5

Transfers: 2

Flag operation: None

Example: SET1 WORD_VAR,CL

NEC

wPD70320/322

SET1 reg8,imm3
Set bit imm3 of the 8-bit register

7 b
lo o o o 1 1 1 1

SET1 mem8,imm3
Set bit imm3 of the 8-bit memory

T T T T T T

~
- O

]

1
0 0 0 1 1 1 0 0

T T T T T T

T
e

|

oo o e o]
|

|

T T T T T T T
t 1 1 0 0 0 reg

Bitimm3 of reg8 «— 1

Sets the bit specified by the 8-bitimmediate data (second
operand) of the 8-bit register (specified by the first oper-
and) to 1. Only the iower 3 bits of the immediate data are
used in the fourth byte of the instruction.

Bytes: 4

Transfers: None

Flag operation: None
Example: SET1 AL, 4

1

mem J

] (disp-low) |]
| " (disp-highy |
[‘ imm3 | ‘ }

Bit imm3 of (mem8) «— 1

Sets the bit specified by the 3-bitimmediate data (second
operand) of the 8-bit memory location (addressed by the
first operand) to 1. Only the lower 3 bits of the immediate
data are used in the last byte of the instruction.

Bytes: 4/5/6

Transfers: 2

Flag operation: None

Example: SET1 BYTE_VAR,5

14.99

pPD70320/322

NEC

SET1 reg16,imm4
Set bit imm4 of the 16-bit register

SET1 mem16,imm4
Set bit imm4 of the 16-bit memory

Bit imm4 of reg16 «— 1

Sets the bit specified by the 4-bitimmediate data (second
operand) of the 16-bit register (specified by the first oper-

T T T
(disp-high)

T
imm4

7 0 7 0
[01010Y0|1T151(1—’ |01010‘0|1T1|1[1’
[0 0 0 1" 171 70" 1] [o o0 0 17171707 1]
[171'0'0'0I g | | mod o 0 o' mem]
I T T T ‘n{m4 T T T J [T T (d|s;;-|°w) T T }

l |
l

and) to 1. Only the lower 4 bits of the immediate data are
used in the 4th byte of the instruciton.

Bytes: 4
Transfers: None

Flag operation. None

Example: SET1 CW,0

Bit imm4 of (mem16) «— 1

Sets the bit specified by the 4-bitimmediate data (second
operand) of the 16-bit memory location (addressed by the
first operand) to 1. Only the lower 4 bits ofimmediate data
are used in the last byte of the instruction.

Bytes: 4/5/6

Transfers: 2

Flag operation: None
Example: SET1 Word_Var,15

14.100

N E C uPD70320/322

SET1CY SET!{ DIR
Set carry flag Set direction fiag
7 0 7 0
T T T T T T
T+ 1 1 1 1 0 0 1 J [R TR T TR 10 1
CY 1 Dir «— 1
Sets the CY flag. Sets the DIR flag. Sets index registers IX and 1Y to auto-
Bytes: 1 decrement when MOVBK, CMPBK, CMPM, LDM STM,
’ INM, and OUTM are executed.
Transfers: None
. Bytes: 1
Flag operation: Transfers: None
B v S Z | AC [P ‘L cY Flag operation:
Ujujujuju 1]

Example: SET1 DIR
Example: SET1 cY

14.101

NEC

pPD70320/322
SHIFT Bytes: 2
SHL reg,1 Transfers: None
Shift left register, single bit Flag operation:
7 0
T T T T T T T
[1 1 0 1 0 0 0 Wj
v S z AC P cY
T T T T T T T
[1 1 1 0 0 reg I X X X u X X
CY «— MSB of reg, reg < reg X2 Example:
When MSB of reg #CY: V « 1 SHL BH1
When MSB of reg =CY: V « 0 SHL AW1
Performs a shift left (1 bit) of the 8- or 16-bit register
specified by the first operand. Zero is loaded to the LSB
of the specified register and the MSB is shifted to the CY
flag. If the sign bit is the same after the shift, the V flag
is cleared.
Reg86

49 000026A

14.102

N E C uPD70320/322

SHL mem,1 Bytes: 2/3/4
Shift left memory, single bit Transfers: 2
7 Flag operation:;

[Vs zZ AC P oY
T 1 i |
1 mod 1 0 0 mem I] X X X | v X i X
T T T L] T T T Example:
L (disp-low) | SHL BYTEPTR[IX]1
‘ , : ‘ SHL WORD_VAR.1
L (disp-high)]

CY « MSB of (mem), (mem) «— (mem) X2
When MSB of (mem) # CY: V « 1
When MSB of (mem) =CY: V «—0

Performs a shift left (1 bit) of the 8- or 16-bit memory
location addressed by the first operand. Zero is loaded
to the addressed memory LSB and the MSB is shifted
to the CY flag. If the sign bit (bit 7 or 15) remains the same
after the shift, the V flag is cleared.

(Memg:16)

(L = 1 F

49-000408A

14.103

pPD70320/322

NEC

SHL reg, CL
Shift left register, variable bit

Bytes: 2
Transfers: None

Flag operation:

7 0
T T T T
L 1 1 0 1 0 0 1 w

] Vv S z AC P cYy

T I T T T

T X X
I 1 1 1 0 0 reg ‘ u X X y
temp «— CL, while temp # 0 Example:
repeat this operation, CY < MSB of reg, SHL CLCL
reg «— reg X 2, temp < temp — 1 SHL BWCL
Performs a shift left of the 8- or 16-bit register specified
by the first operand by the number in the CL register. Zero
is loaded to the specified register's LSB. MSB is shifted
to the CY flag.

cy 157 Reg8ne 0

49 000027A

14.104

NEC

wPD70320/322
SHL mem, CL Bytes: 2/3/4
Shift left memory, variable bit Transfers: 2
7 0 Flag operation:

T T T T T

‘_l 1 0 1 0 o 1 9w j ‘ ‘
vVi.§s Z A P cCY

T T T T T T T | ! |

Lmod 1 0 0 mem l le?XJU[xlx
T T .. T T T Example:

L (disp-low) l SHL BYTEPTR[IY]CL

- - . - T . T SHL WORDPTR[IY],CL
i (disp-high)]
temp < CL, while temp # 0,
repeat operation, CY «— MSB of (mem),
(mem) < (mem) X 2, temp <« temp — 1
Performs a shift left of the 8- or 16-bit memory location
addressed by the first operand by the number in the CL
register. Zero is loaded to the addressed memory LSB
and the MSB is shifted to the CY flag.

cy 157 (Memane) 0

14.105

wPD70320/322

NEC

SHL reg,imm8
Shift left register, multibit

T T T 1
imm8

Temp < imm8, while temp # 0,
repeat operation, CY «— MSB of reg,
reg < reg X 2, temp «— temp — 1

Performs a shift left of the 8- or 16-bit register (specified
by the first operand) by the 8-bit immediate data (second
operand). Zero is loaded to the specified register's LSB.
MSB is shifted to the CY flag.

Bytes: 3
Transfers: None

Flag operation:

Q
<

V]s]z]AC
ul x| x

x| o

x

157

[x| x]u
Example:
SHL AH,3.
SHL DW,15
Reg8/16 0

49 0000274

14.106

NEC

pPD70320/322
SHL mem,imm8 Bytes: 3/4/5
Shift left memory, multibit Transfers: 2
7 0 Flag operation:
r T T T
1 10 0 0o o 0 w J
V| S z AC P CY

T T T T T T | U X X
L mod 1 0 0 mem ‘ ulx X ‘

T T T T T T Example:
[(disp-low)] SHL BYTEPTR(IX][2}7

T - ; - SHL WORD_VAR,5
i (disp-high) '

T T T T
{ imm8]
temp «— imm8, while temp # 0,
repeat operation, CY < MSB of (mem)
(mem) < (mem) X 2, temp «— temp — 1
Performs a shift left of the 8- or 16-bit memory location
addressed. by the first operand by the bits specified by
the 8-bit immediate data (second operand). Zero is
loaded to the specified memory locations’s LSB. The
MSB is shifted to the CY flag.

cv 157 (Mem8:16) 0
i
" 49-000409A

14.107

uPD70320/322 N E C

SHR reg,1 Bytes: 2
Shift right register, single bit Transfers: None
7 0 Flag operation:
T T T T T T T
b 1 0 1 0 0 0 w]
|V S b4 AC P cY
T T T T T T T
BEERERERE reg | X [X[Xxjujxjx
CY « MSB of reg, reg « reg + 2
When MSB of reg # bit following MSB of reg: V « 1 Example:
When MSB of reg = bit following MSB of reg: V «— 0 SHR BH,1
Performs a logical shift right (1 bit) of the 8- or 16-bit SHR AW

register specified by the first operand. Zero is loaded to
the MSB of the specified register and the LSB is shifted
to the CY flag. If the sign bit (7 or 15) is the same after
the shift, the V flag is cleared.

cy 157 146 Reg8n16 0

0 LT ——T7%

49 000019A

14.108

NEC

pPD70320/322

SHR mem,1
Shift right memory, single bit

T T
(disp-low)

|
|
T I ‘ (disg-high)‘T ‘ I J

CY «— MSB of (mem), (mem) <« (mem) + 2

When MSB of (mem) # bit following MSB of (mem):
V1

When MSB of (mem) = bit following MSB of (mem):
V<0

Performs a logical shift right (1 bit) of the 8- or 16-bit
memory location addressed by the first operand. Zero is
loaded to the memory location’s MSB and the LSB is
shifted to the CY flag. If the sign bit (bit 7 or 15) remains
the same after the shift, the V flag is cleared.

2/3/4
Transfers: 2

Bytes:

Flag operation:

Example:
SHR
SHR

BYTE_VAR [BW]1
WORD_VAR [IX],1

cy 157 146

(Mem8/16)

7 {17

ﬁf]:___w. . }__‘

49-000410A

14.109

NEC

uPD70320/322
SHR reg,CL Bytes: 2
Shift right register, variable bit Transfers: None
7 0 Flag operation:
T T T T T T T
L1 1 0 1 0 0 1 W—|
vVIis[z]a]PT oy
T T 1 T T T !
L1 I 1 1 0 1 reg j u L X X u T X | X

temp < CL, while temp # 0, Example:
repeat operation, CY < MSB of reg, SHR AL,CL
reg <— reg + 2, temp «— temp — 1 SHR BW,CL

Performs a logical shift right of the 8- or 16-bit register
(specified by the first operand) by the number in the CL
register. Zero is loaded to the specified register's MSB.
The LSB is shifted to the CY flag.

cy 157146 Reg8n16

1 LT ——

490000194

14.110

N E C uPD70320/322

SHR mem,CL Bytes: 2/3/4
Shift right memory, variable bit Transfers: 2
7 0 Flag operation:
T T T T T T T
} 1 1 0 1 0 0 1 WJ i :
V| s zZIAC] P |CY
T T T T T] T U X X U | X I x
mod 1 0 1 mem l I | | ! !
T T T T T T Example:
| (disp-low) | SHR BYTE_VARCL
: : T : T SHR WORD PTR [IY],CL
1 (disp-high) J
temp < CL, while temp # 0,
repeat operation, CY «— MSB of (mem),
(mem) «— (mem) + 2, temp +— temp — 1
Performs a logical shift right of the 8- or 16-bit memory
location (addressed by the first operand) by the number
in the CL register. Zero is loaded to the addressed
memory MSB and the LSB is shifted to the CY flag.
(Mem8&/16)

R

49 0000204

14.111

wPD70320/322 N E C

SHR reg,imm8 Bytes: 3
Shift right register, multibit Transfers: None
Flag operation:

7 0
T T T T T
w
L ! ! 0 0 0 0 0 \" S z AC P cY

T T T T T T X X U X X
L 1 1 1 0 1 reg] v

T T T 1 T T T Example:
l imm8] SHR BL,6

SHR IX,2
temp <«— imm8, while temp # 0,
repeat operation, CY <« MSB of reg,
reg < reg + 2, temp +— temp — 1
Performs a shift right of the 8- or 16-bit register (specified
by the first operand) by the 8-bitimmediate data (second
operand). Zero is loaded to the specified register's MSB.
The LSB is shifted to the CY flag.
cy 157 Reg86

s
5
:c.

49-000411A

14.112

N E C nPD70320/322

SHR mem,imm8 Bytes: 3/4/5
Shift right memory, multibit Transfers: 2
7 0 Flag operation:
[171 0 0o 0o 0o o w |
V]s |z A[PCY
T T T 1 Tu | x| X
‘ mbd " 0 1 mem } __U_J._x_ X 1 I
T T T T T Exampie:
L (disp-low) | SHR BYTE PTR [BW]2
—— SHR WORD_VAR,13
i (disp-high) I
T T T T T T T
[imm8 }

temp «— imm8, while temp # 0,
repeat operation, CY «— MSB of (mem),
(mem) «— (mem) + 2, temp «— temp — 1

Performs a shift right of the 8- or 16-bit memory location
(addressed by the first operand) by the bits specified by
the 8-bit immediate data (second operand). Zero is
loaded to the specified memory location’s MSB. The LSB
is shifted to the CY flag.

49 000020A

14.113

NEC

uPD70320/322
SHRA reg,1 Bytes: 2
Shift right arithmetic Transfers: None
7 0 Flag operation:

T T T T T T T

[+ 71701 0 0" 0" w|
\" S 4 AC P cY

T T T T T T T
EEEREREEE reg | o[X XYV XX
CY « LSB of reg, Example:
reg «—reg +2,V«0 SHRA CL,1
MSB of operand does not change SHRA AW1
Performs an arithmetic shift right (1 bit) of the 8- or 16-bit
register specified by the first operand. A bit with the same
value as the original bit is shifted to the specified reg-
ister's MSB. The LSB is shifted to the CY flag. The sign
remains unchanged after the shift.

cY 157 Reg 0

— T

49 000021A

14.114

NEC

uPD70320/322

SHRA mem,1

Shift right arithmetic, memory, single bit

2/3/4
Transfers: 2

Bytes:

7 0 Flag operation:
[
| 1 1 0 1 0 0 0 w J
. mod 1 1 1 mem .
[. T Example:
l (disp-low) | SHRA BYTE_VAR/
T T SHRA WORD_VAR,1
' (disp-high) J
CY « LSB of (mem),
(mem) «— (mem) +~ 2,V «—0
MSB of operand does not change
Performs an arithmetic shift right (1 bit) of the 8- or 16-bit
memory location addressed by the first operand. A bit
with the same value as the original bit is shifted to the
memory location's MSB. The LSBiis shifted to the CY flag.
The sign remains unchanged after the shift.
cyY 157 (Mema8) 0
O LT —1
[, g
\ —J

49-000412A

14.115

NEC

pPD70320/322
SHRA reg,CL Bytes: 2
Shift right arithmetic, register, variable bit Transfers: None
7 0 Flag operation:
T T T T T T T
1 1 0 1 0 0 1 W
r T \" § | Z | AC P cY
T T T T T T U | x TWJ C ¢
1 1 1 1 1 reg 1 v X | X ! v X X
temp < CL, while temp # 0, Example:
repeat operation, CY « LSB of reg, SHRA BLCL
reg «— reg + 2, temp « temp — 1 SHRA bw,CL
Performs an arithmetic shift right of the 8- or 16-bit reg-
ister (specified by the first operand) by the number of bits
specified by the CL register. A bit with the same value
as the original bit is shifted to the register's MSB. The
LSB is shifted to the CY flag. The sign remains
unchanged after the shift.
Reg8/16

cY 187

" ™

atj=n

T

49-000413A

14.116

NEC

pPD70320/322
SHRA mem,CL Bytes: 2/3/4
Shift right arithmetic, memory, variable bit Transfers: 2
7 0 Flag Operation:

T T T T T T T
L1 1 0 1 0 0 1 W} VLrSiZ AC | P | CY

T T T T T T T u @ x @ X u ' x @ X
| mod 1 1 1 mem J 1

T T 1 T T Example:
| (disp-low) | SHRA BYTE_VARCL

1 : : : . SHRA WORD_VAR,CL
{ (disp-high) !
temp < CL, while temp # 0,
repeat operation, CY «— LSB of (mem),
(mem) <« (mem) + 2, temp «— temp — 1,
MSB of operand does not change
Performs an arithmetic shift right of the 8- or 16-bit
memory location (addressed by the first operand) by the
number of bits specified in the CL register. A bit with the
same value as the original bit is shifted to the memory
location’s MSB. The LSB is shifted to the CY flag. The
sign remains unchanged after the shift.
cv 157 (Mema16) 0
¢ l 1
. i
J

14.117

uPD70320/322

NEC

SHRA reg,imm8
Shift right arithmetic, register, multibit

Bytes: 3
Transfers: None

Flag operation:

\ S 4 AC cY
T T T T T T T U X X U X
l 1 1 1 1 1 reg
i T T T T T T Example:
imm3 SHRA CL3
SHRA BW,7
temp < imm8, while temp # 0,
repeat operation, CY « LSB of reg,
reg <« reg = 2,temp <« temp — 1,
MSB of operand does not change
Performs an arithmetic shift right of the 8- or 16-bit reg-
ister (specified by the first operand) by the 8-bit imme-
diate data in the second operand. A bit with the same
value as the original bit'is shifted to the register's MSB.
The LSB is shifted to the CY flag. The sign remains
unchanged after the shift.
cY 15/7 Regd16 0

anj=n

49-000413A

14.118

NEC

uwPD70320/322
SHRA mem,imm8 Bytes: 3/4/5
Shift right arithmetic, memory, multibit Transfers: 2
7 0 Flag operation:
-
| 1 1 0 0 0 0 0 w ‘
\ S z AC | P cYy
T T T I
{ mod 1 1 1 mem ‘ u X X v X X
I f [P T Example:
| (disp-low) I SHRA BYTE_VARS
i : - SHRA WORD_VAR,7
’ (disp-high)]
1 T T
(imm8]
temp < imm8, while temp # 0,
repeat this operation, CY «— LSB of (mem),
(mem) « (mem) + 2, temp <« temp — 1,
MSB of operand does not change
Performs an arithmetic shift right of the 8- or 16-bit
memory location (addressed by the first operand) by the
number specified by the 8-bit immediate data in the
second operand. A bit with the same value as the original
bit is shifted to the register's MSB. The LSB is shifted to
the CY flag. The sign remains unchanged after the shift.
cy 157 (Mem8.16) o
T 7 ¥
O LT =11
C ‘ |
d

49-000412A

14.119

wPD70320/322 N E C

ROTATE Bytes: 2
ROL reg,1 Transfers: None
Rotate left, register, single bit Flag operation:
L — V] S][z] AP oY
L 1 1 0 1 0 0 0 w J X - X |
T T T T T T T
l 1 1 0 0 0 reg I Example:
ROL AH1
CY «— MSB of reg, reg « reg X 2 + CY ROL DW,1
MSBofreg#CY: V<1
MSBofreg=CY: V<0
Rotates the 8- or 16-bit register specified by the first
operand left by one bit. If the MSB changes, the V flag
is set. If the MSB stays the same, the V flag is cleared.
cy 157 146 Reg8/16 0

CHALTT —— T+

49 000022A

14.120

NEC

uPD70320/322

ROL mem,1 Bytes: 2/3/4

Rotate left, memory, single bit Transfers: 2

Flag operation:

0

T T T T T T T
’1 1 o 1 OOOWJ V}S Z‘Acip‘CY

T T T T T T T X : ‘ X
[mod 0 0 0 mem j -
l : T I T T T Example:
| (disp-low)] ROL BYTE_VAR/1

ROL WORD PTR [IX][7],1

T T T T

[(disp-high) 1

CY «— MSB of (mem),

(mem) «— (mem) X 2 + CY
MSB of (mem) # CY: V « 1
MSB of (mem) =CY: V «20

Rotates the 8- or 16-bit memory location (addressed by
the first operand) left by one bit. If the MSB changes, the
V flag is set; if it stays the same, the V flag is cleared.

CY 15/7 14/6

T

49-000414A

14121

WPD70320/322 N E C

ROL reg,CL Bytes: 2
Rotate left, register, variable bit Transfers: None

7 Flag operation:
T T T T T T T
L ! ! 0 ! 0 9 ! v S Z AC P (34

|
u1110r0{01 rregl J u X

S |o

temp «— CL, while temp 0, EX;IBPL@ bLOL
repeat operation, CY < MSB of reg, ROL BPOL.

reg «— reg X 2 + CY,
temp «— temp — 1

Rotates the 8- or 16-bit register specified by the first
operand left by the number of bits specified by the CL
register.

cy 157 Reg8/16 o

(T =T+

49 0000234

14.122

N E C uPD70320/322

ROL mem,CL Bytes: 2/3/4

Rotate left, memory, variable bit Transfers: 2

Flag operation:

T T i
Vo s | Z jAC‘FP CY
U

T T ‘ 1 : +— ‘ —
[mod 0 0 0 mem l | | i | |
{ (disg-low) Z ‘ I Example:
ROL BYTEPTR [IX],CL
T T T T ROL WORD_VAR,CL
\ (disp-high) J

temp « CL, while temp # 0,

repeat operation, CY «— MSB of (mem),
(mem) «— (mem) X 2 + CY,

temp «— temp — 1

Rotates the 8- or 16-bit memory location addressed by
the first operand left by the number of bits specified in
the CL register.

cy 157 (Mem3/16) 0
¥

49-000415A

14.123

wPD70320/322

NEC

ROL reg,imm8
Rotate left, register, multibit

Bytes: 3

Transfers:

Flag operation:

None

Vv S AC P cYy
T T T T 1 T X
L1 1 0 0 0 reg ’ u
T T T T T T T :
imms] ExaRrglee.
temp «— imm8, while temp # 0, ROL
repeat operation, CY < MSB of reg,
reg «—reg X 2 + CY,
temp «— temp — 1
Rotates the 8- or 16-bit register (specified by the first
operand) left by the number of bits specified by the 8-bit
immediate data in the second operand. The register's
MSB is shifted to the CY flag and to the LSB.
Reg816 °

cY 157 14/6

(LT

49 0000224

14.124

NEC

pPD70320/322

ROL mem,imm8

Rotate left, memory, multibit

[T T T T T T J
T T T T T T T

[mod 0 0 0 mem 1
T T T T T

l (disp-low)]

‘ f(dispthigh)T I

f T T i ":mg T T T }

temp «— imm8, while temp # 0,

repeat operation, CY «—— MSB of (mem),
(mem) «— (mem) X 2 + CY,

temp «— temp — 1

Rotates the 8- or 16-bit memory location (addressed by
the first operand) left by the number of bits specified by
the 8-bit immediate data in the second operand. The
memory location’s MSB is shifted to the CY flag and to
the LSB.

Bytes: 3/4/5
Transfers: 2

Flag operation:

S

v
U

T
{
L

Example:
ROL BYTE_VAR7
ROL WORD_VAR2

49-000415A

14125

uPD70320/322 N E C

ROR reg,1 Bytes: 2
Rotate right, register, single bit Transfers: None
Flag operation:

] \ S Z | AC P cY
!

T T T T T T T X X
L1 1 0 0 1 reg
- Example:
CY «— LSB of reg, reg « reg + 2,
MSB of reg « CY ROR ALt
MSB of reg 5 bit following MSB of reg: V « 1 ROR Cwit

MSB of reg = bit following MSB of reg: V « 0

Rotates the 8- or 16-bit register (specified by the first
operand) right by 1 bit. If the MSB of the specified register
changes, the overflow flag is set. If the MSB stays the
same, the overflow flag is cleared.

Reg8/16 0

) L —— T

*
T

49 000014A

14.126

NEC

pPD70320/322

ROR mem,1
Rotate right, memory, single bit

7 0
1 1 0o 1 o 0o 0 W
{ mod 0 0 1 mem
r ‘ " (disp-low)

T T T

l (disp-high)

CY « LSB of (mem), (mem) «— (mem) =+ 2

MSB of (mem) «— CY

MSB of (mem) # bit following MSB of (mem):
MSB of (mem) = bit following MSB of (mem):

Vi1
V0

Bytes: 2/3/4
Transfers: 2

Flag operation:

Example:
ROR BYTE_VAR,1
ROR WORD PTR [BW],1

Rotates the 8- or 16-bit memory location addressed by
the first operand right by 1 bit. If the MSB of the addressed
memory changes, the overflow flag is set. If the MSB
stays the same, the overflow flag is cleared.

L

cy

]

|

157

14/6

(Mem8/16) 0
—
ds

L

49-000416A

14.127

uPD70320/322 N E C

ROR reg,CL Bytes: 2
Rotate right, register, variable bit Transfers: None
7 0 Flag operation:
I 1 l 1 ' 0 l 1 I 0 ! 0 l 1 l w 1
F(S| Z|AC| P ,'#QLJ
T T T T T T T
[+ 7170 0" 4 g | hd X
temp < CL, while CL# 0, Example:
repeat operation, ROR AHCL
CY < LSB of reg, reg — reg + 2, ROR AWCL
MSB of reg — CY,
temp «~— temp — 1
Rotates the 8- or 16-bit register (specified by the first
operand) right by the number of bits specified by the CL
register.
cyY 157 Reg8né 0

O T

49 0000154

14.128

NEC

pPD70320/322
ROR mem,CL Bytes: 2/3/4
Rotate right, memory, variable bit Transfers: 2
7 0 Flag operation:
l1 7170 170 0" 1" w|
VIis[z][A]P oY

T T T T T T T u i] X
{ mod 0 0 1 mem]

T T T T T ™ Exampie:
B (disp-low) ROR BYTE_VARCL

T . : . : - ROR WORD PTR [IX]2,CL
[(disp-high) }
temp «— CL, while temp # 0,
repeat operation,
CY « LSB of (mem), (mem) «— (mem) <+ 2,
MSB of (mem) < CY,
Temp « temp — 1
Rotates the 8- or 16-bit memory location (specified by
the first operand) right by the number of bits specified
by the CL register.

cy 187 (Mema/6) 0

35 l
{6

—

49-000417A

14.129

uPD70320/322 N E C

ROR reg,imm8 Bytes: 3
Rotate right, register, multibit Transfers: None
Flag operation:

7 0

T 1 T 1

[+ 170 0 0" 0 o w]
visJ]zTlTa]PTcy

T T T T T T T
171 0" 0 1 reg] v [X
T T I — T T T Example:
l imm8 I ROR AL2
ROR IX3

temp «— imm8, while temp # 0,
repeat operation,

CY «— LSB of reg, reg «— reg + 2,
MSB of reg < CY,

temp «— temp — 1

Rotates the 8- or 16-bit register (specified by the first
operand) right by the number of bits specified by the 8-bit
immediate data in the second operand. The register’s
LSB is shifted to the MSB and the CY flag.

Reg8/16 0

A T T

49 0000154

14.130

NEC

pPD70320/322
ROR mem,imm8 Bytes: 3/4/5
Rotate right, memory, multibit Transfers: 2
7 0 Flag operation:

T T T T T T T
; 1 1 0 0 0 0 0 w l v SW Z TAC 5 oy

T T T T | X
| mod ‘ 0 [0 1 T mem -| v I l

T T 7 T T] Example:
l (disp-low) | ROR BYTE_VARSG

T : - - + - ROR WORD_VAR [IX],7

1 (disp-high) }

T T T T T T T
i imm8 J

temp «— imm8, while temp # 0,

repeat operation,

CY « LSB of (mem), (mem) «— (mem) =+ 2,
temp <« temp — 1

Rotates the 8- or 16-bit memory location addressed by
the first operand right by the number of bits specified by
the 8-bit immediate data in the second operand. The
memory location’s LSB is shifted to the MSB as well as
to the CY flag.

cY 15/7

(Mema16) 0

¥

mifan

1§

49-000417A

14.131

NEC

pPD70320/322
ROLC reg,1 Bytes: 2
Rotate left with carry, register, single bit Transférs: None
7 0 Flag operation:

T T T T T T T

[+ 71707170 0" 0" w|
\ S Z | AC P cY

T T T T T T T
1" 17071 0 reg | X X
tmpcy «— CY, CY «— MSB of reg, Example:
Reg « reg X 2 + tmpcy, ROLC BL/1
MSBofreg=CY: V<0 ROLC IV1
MSB of reg # CY: V «1
Rotates the 8- or 16-bit register specified by the first
operand left, including the CY flag, by one bit. If the
register’'s MSB changes, the V flag is set. If it stays the
same, the V flag is cleared.

oy 157 148 Regare 0

49 000016A

14,132

NEC

uPD70320/322
ROLC mem,1 Bytes: 2/3/4
Rotate left with carry, memory, single bit Transfers: 2
7) | ‘ : I : 0 Flag operation:
["1 70" 170" 0 0 w|
\" S Z | AC P cY

T T T T T T T
L mod 0o 1 0 mem l X X

T T T T T T .
l (disp-low)] Example:

ROLC BYTE_VAR,1

T T T T T ROLC WORD PTR [IY],1
[(disp-high) |]
tmpcy <« CY, CY « MSB of (mem),
(mem) <« (mem) X 2 + tmpcy,
MSB of (mem)=CY: V<« 0
MSB of (mem) # CY: V «1
Rotates the 8- or 16-bit memory location (addressed by
the first operand) left by one bit. The rotation includes
the CY flag. If the MSB of the memory location changes,
the V flag is set. If it stays the same, the V flag is cleared.

cyY 157 148 (Mema/6) 0

49-000418A

14.133

NEC

uPD70320/322
ROLC reg,CL Bytes: 2
Rotate left with carry, register, variable bit Transfers: None
7 0 Flag operation:
T T T T T T T
1 1 0 1 0 0 1 w
L ‘l " S Z | AC cY
T T T T T T T
I 1 1 0 1 0 reg | v X
temp <« CL, while temp 0, Example:
repeat operation, tmpcy < CY, ROLC AL,CL
CY < MSB of reg, reg «— reg X 2 + tmpcy, ROLC BW.CL
temp +~ temp — 1
Rotates the 8- or 16-bit register (specified by the first
operand) left by the number in the CL register. Rotation
includes the CY flag.
Regane

49 000017A

14.134

NEC

uPD70320/322

ROLC mem,CL
Rotate left with carry, memory, variable bit
7 0

u 10 1 0 o 1 w|
T T T T T T

L mod 0 1 0 mem]
T T T T

L (disp-low) !
T I T T T T T

[(disp-high) 1

temp «— CL, while temp # 0,

repeat operation, tmpcy « CY,

CY « MSB of (mem),

(mem) < (mem) X 2 + tmpcy,

temp «— temp — 1

Rotates the 8- or 16-bit memory location (addressed by

the first operand) left by the number in the CL register.
Rotation incfudes the CY flag.

Bytes: 2/3/4

Transfers: 2

Flag operation:

Vv s | zZ A] P |CY
o R | X
Example:

ROLC BYTE PTR[IY],CL

ROLC WORD_VAR,CL

CcY 157

(Mem8-16)

1

7

49-000419A

14.135

uPD70320/322 N E C

ROLC reg,imm8 Bytes: 3
Rotate left with carry, register, multibit Transfers: None
7 0 Flag operation:
T T T T T T T
1 1 0 0 0 0 0 w
1 j \ S Z | AC P CcY
I T T T T T T V] X
[1 1 0 1 0 reg I
T T T T T T Example:
| imm8 | ROLC BL3
ROLC AW14

temp < imm8, while temp # 0,

repeat operation, tmpcy « CY,

CY <« MSB of reg, reg « reg X 2 + tmpcy,
temp «— temp — 1

Rotates the 8- or 16-bit register (specified by the first
operand) left by the number of bits specified by the 8-bit
immediate data of the second operand. Rotation includes
the CY flag.

cy 157 Reg8ne 0

AT T

YO0 A

14.136

NEC

wPD70320/322

ROLC mem,imm8
Rotate left with carry, memory, multibit

3/4/5
Transfers: 2

Bytes:

Flag operation:

vIisJ[z][a]P]Jcy

T T T T T T T
[mod 0 1 0 mem l v | I J][X

T o f f Example:
I (disp-low) | ROLC BYTE_VAR3

—T T T T T ROLC WORD_VAR,5
r (disp-high) J
T T T T T
[imm8 J
temp «— imm8, while temp # 0,
repeat operation, tmpcy < CY,
CY «— MSB of (mem),
(mem) «— (mem) X 2 + tmpcy,
temp «— temp — 1
Rotates the 8- or 16-bit memory location (addressed by
the first operand) left by the number of bits specified by
the 8-bitimmediate data of the second operand. Rotation
includes the CY flag.
cy 157 (Meman6) 0

—

A

L

49-000419A

14.137

NEC

uPD70320/322
RORC reg,1 Bytes: 2
Rotate right with carry, register, single bit Transfers: None

Flag operation:

7 0
L1T1'o'1'o'o'o'w]

v S Z | AC P | CY
T T T
L1 1 o 11! "reg |] X X
tmpcy < CY, CY «— LSB of reg, Example:
reg « reg + 2, MSB of reg « tmpcy, RORC BH,1
MSB of reg # bit following MSB of reg: V « 1, RORC BP1

MSB of reg = bit following MSB ofreg: V «— 0

Rotates the 8- or 16-bit register, specified by the first
operand, right (including the CY flag) by one bit. If the
MSB changes, the V flag is set. If it remains unchanged,
the V flag is cleared.

cy 187148 Regéne

49 0000184

14.138

N E C uPD70320/322

RORC mem,1 Bytes: 2/3/4
Rotate right with carry, memory, single bit Transfers: 2
7 Flag operation:

0
l11‘01‘0 0o 0 W

| VIS [z AC[P CY
r T T T T] |
L mod 0 1 ‘ 1 ‘mem 1 X ‘ | | X
v T [f T ' Example:
! (disp-low)] RORC BYTE PTR[BW],1
T T T T T RORC WORD_VAR [BW] [IX],1
l (disp-high) J

tmpcy «— CY, CY « LSB of (mem),

(mem) «— (mem) + 2, MSB of (mem) < tmpcy,

MSB of (mem) 5 bit following MSB of (mem): V « 1
MSB of (mem) = bit following MSB of (mem): V « 0

Rotates the 8- or 16-bit memory location (addressed by
the first operand) right (including the CY flag) by one bit.
If the MSB changes, the V flag is set. If it remains
unchanged, the V flag is cleared.

cy 157 146 ~_(Meman6) [
4t

— [— [

49-000420A

14.139

uPD70320/322 N E C

RORC reg,CL Bytes: 2
Rotate right with carry, register, variable bit Transfers: None
7 0 Flag operation:
(171 "0 7170 0" 1" w|
\ S z AC P CcY
T T T T T T T X - X
‘ 1 1 0 1 1 reg]
temp «— CL, while temp # 2, Example:

RORC ALCL

repeat operation, tmpcy < CY,
peat op poy RORC CWCL

CY «— LSB of reg, reg «— reg + 2
MSB of reg < tmpcy, temp « temp — 1,

Rotates the 8- or 16-bit register specified by the first

operand right (including the CY flag) by the number in
the CL register.

49 000028A

14.140

N E C uPD70320/322

RORC mem,CL Bytes: 2/3/4
Rotate right with carry, memory, variable bit Transfers: 2
7
1 1 0 1 0 0

T T 0
l 1w
l mbd l 0 ‘ 1 l 1 ‘ ‘ mem[41
| -
|

Flag operation:

V | S1Z AC| P |CY
X

| |

1 ‘ | X

f Example:
RORC BYTE_VAR,CL

RORC WORD_VAR [BP],CL

T T
(disp-low)

|
" (disp-high)' [' J

temp « CL, while temp # 0,

repeat operation, tmpcy « CY,

CY « LSB of (mem), reg «— reg + 2,

MSB of (mem) «— tmpcy, temp «— temp — 1

Rotates the 8- or 16-bit memory location specified by the

first operand right (including the CY flag) by the number
in the CL register.

cv 157 (Meman®) 0

49-000421A

14.141

NEC

uPD70320/322
RORC reg,imm8 Bytes: 3
Rotate right with carry, register, multibit Transfers: None
7 0 Flag operation:
T T T T T T T
17170 0 0" 0 0 w]
\" S Z | AC cY
T T T T T T
[1 I 1 0 1 1 reg —| X X
T T T 1 T T] Example:

| imm8 | RORC CH5

W,1
temp «— imm8, while temp # 0, RORC BW.10
repeat operation, tmpcy < CY,
CY «— LSB of reg, reg « reg + 2,
MSB of reg « tmpcy, temp < temp — 1
Rotates the 8- or 16-bit register specified by the first
operand right (including the CY flag) by the number of
bits specified by the 8-bit immediate data of the second
operand.

cyY 157 Regtié

Sl E—

H

49 0000284

14.142

NEC

pPD70320/322
RORC mem,imm8 Bytes: 3/4/5
Rotate right with carry, memory multibit Transfers: 2
7 0 Flag operation:
T T T
[1 1 0 0 0 0 0 w l .
V| S| Z A P QY
T T T T |]
| mod 0 1 1 mem J vl !] X
J T T ien T T T Example:
| (disp-low) ! RORC BYTE_VAR3
T T T T T RORC WORD PTR [BW],10
l (disp-high) }
T I T T
\ imm8]

temp < imm8, while temp # 0,
repeat operation, tmpcy « CY,
CY « LSB of (mem), (mem) «— (mem) + 2,
MSB of (mem) « tmpcy, temp «— temp — 1

Rotates the 8- or 16-bit memory location addressed by
the first operand right (including the CY flag) by the
number of bits specified by the 8-bit immediate data of
the second operand.

(Memari6) g

4 f I]

T
J

49-000421A

14.143

uPD70320/322

SUBROUTINE CONTROL CALL regptr16

CALL near-proc Call, register, same segment

Call, relative, same segment 7 0

o |o

7
L1 T 7 1! 0 T] T 0 T 0 T
L |
l T T
(SP —1,SP —2) « PC,

SP «— SP — 2,
PC « PC + disp

Saves the PC to the stack and loads the 16-bit displace-
ment to the PC. Enables calls to any address within the
current segment.

Bytes: 3
Transfers: 1

" (disp-low)

T (disp-high)

None
NEAR_PROC

Flag operation:

Example: CALL

(SP —1,SP —2) « PC,
SP «— SP — 2,
PC « regptr16

Saves the PC to the stack and loads the value of the 16-bit
register specified by the operand to the PC. Enables calls
to any address within the current segment.

Bytes: 2
Transfers: 1
Flag operation: None

Example: CALL BX

14.144

NEC

uPD70320/322
CALL memptri6 CALL far-proc
Call, memory, same segment Call, direct, external segment
7 0 7 0
T T 1
|J 1T T T T T Ty]] 10 0o 110" 1 o 1
T T T T T T
L mod 0 1 0 ‘ mem l [] I(oﬂsét-low)] I }
T T T T T T T
B (disp-low)] L (offset-high) |
T T L T T T
L (disp-high) 1 l I I (sed-!ow) J
_ — D) T T L T
(SP—1,SP —2) « PC, l (seg-high)]

SP « SP — 2, PC «— (memptr16)

Saves the PC to the stack and loads the contents of the
16-bit memory location addressed by the operand to the
PC. Enables calls to any address within the current
segment.

Bytes: 2/3/4

Transfers: 2

Flag operation: None

Example: CALL TABLE_ENTRY [IX]

(SP—1,SP —2) «— PS,

(SP —3,SP —4) «— PC,

SP «— SP — 4,

PS « seg,

PC « offset

Saves the PS and PC to the stack. Loads the fourth and
fifth bytes of the instruction to the PS and the second and
third bytes to the PC. Enables calls to any address in any
segment.

Bytes: 5

Transfers: 2

None
FAR_PROC

Flag operation:
Example: CALL

14.145

NEC

uPD70320/322
CALL memptr32 RET (no operand)
Call, memory, external segment Return from procedure, same segment
7 0 7 0
T T T T T T T
L P T T T T T T] [T T e "o T e T T T]

T T T T

L m[od 0 1 1 ' merq] j

| T T T (d;p[-low) I T j
T T T T T T

[(disp-high)]

(SP —1,SP —2) « PS,

(SP — 3,SP —4) — PC,

SP « SP —4,

PS « (memptr32 + 3, memptr32 + 2),
PC «— (memptr32 + 1,,memptr32)

Saves the PS and PC to the stack. Loads the higher two
bytes of the 32-bit memory addressed by the bperand
to the PS. Loads the lower two bytes to the PC. Enables
calls to any address in any segment.

Bytes: 2/3/4
Transfers: 4
None
FAR_TABLE [IY]

Flag operation:
Example: CALL

14.146

PC « (SP + 1, SP),
SP—SP+2

Used for returning from intrasegment calls. Restores the
PC from the stack. The assembler automatically distin-
guishes this instruction from the other RET instruction
with no operand.
Bytes: 1
Transfers: 1
Flag operation: None

Example: RET

NEC

pPD70320/322

RET pop-value

Return from procedure, SP jump, same segment

RET (no operand)

Return from procedure, external segment

T T T
pop-value-low

T T T
pop-value-high

PC «— (SP + 1,SP),
SP «—SP +2,
SP « SP + pop-value

Restores the PC from the stack and adds the 16-bit pop-
value specified by the operand. Effective for jumping a
desired number of parameters when the parameters
saved in the stack become unnecessary to the program.
Used for returning from intrasegment calls. The
assembler automatically distinguishes this instruction
from the other RET pop-value instruction.

Bytes: 3
Transfers: 1
Flag operation: None

Example: RET 8

PC «— (SP + 1, SP),
PS «— (SP +3,SP + 2),
SP—SP+4

Restores the PC and PS from the stack. Used for return-
ing from intersegment calls. The assembler automatically
distinguishes this instruction from the RET instruction
without an operand.

Bytes: 1

Transfers: 2
Flag operation:
Example: RET

None

14.147

uPD70320/322
RET pop-value STACK OPERATION
Return from procedure, SP jump, intersegment PUSH mem16

r 2 Push, 16-bit memory
| 1 1 0 0 1 0 1 0] ; .
T T T T T T T
T T T T T T [1 1 1 1 1 1 1 1 J
l pop-value-low !
! T T T T T T
T T T T T l mod 1 1 0 mem J
{ pop-value-high —I
T T T 1 T T T
PC «— (SP + 1, SP)v L (d|sp_|ow) l
PS « (SP +3,SP +2), T T ; T T
S Spi [(disp-high) J

SP <« SP + pop-value

Restores the PC and PS from the stack and adds the
16-bit pop-value specified by the operand to the SP. This
command is effective for jumping the SP value when the
parameters saved in the stack subsequently become
unnecessary to the program. Used for returning from
intersegment calls. The assembler automatically distin-
guishes this instruction from the other RET pop-value
instruction.

Bytes: 3

Transfers: 2

Flag operation: None
Example: RET 4

14.148

(SP — 1, SP — 2) «— (mem16),
SP«—SP—2

Saves the contents of the 16-bit memory location
addressed by the operand to the stack.

Bytes: 2/3/4

Transfers: 2

Flag operation: None
Example: PUSH DATA [IX]

NEC

pPD70320/322
PUSH reg16 PUSH sreg
Push, 16-bit register Push, segment register
7 0 7
T T T T T T T T T T T T T T
0 1 0 1 0 reg I I 0 0 0 sreg 1 1 0

(SP — 1, SP — 2) — reg16,
SP « SP—2

Saves the 16-bit register specified by the operand to
the stack.

Bytes: 1

Transfers: 1

None
Example: PUSH Y

Flag operation:

(SP — 1, SP — 2) « sreg,
SP «—SP -2

Saves the segment register specified by the operand to
the stack.

Bytes: 1

Transfers: 1

None
Example: PUSH PS

Flag operation:

14.149

pPD70320/322 N E C

PUSH PSW PUSHR
Push, program status word Push, register set
7 7

| 0 1 1 0 0 0 C

(SP — 1, SP — 2) «— PSW, temp < SP,

SP«—SP -2 (SP — 1, SP — 2) «— AW,
(SP —3,SP — 4) «— CW,

Saves the PSW to the stack. (SP — 5, SP — 6) «— DW,

Bytes: 1 (SP — 7, SP — 8) «— BW,

. (SP — 9, SP — 10) « temp,
Transfers: 1 (SP — 11, SP — 12) — BP,
Flag operation: None (SP — 13, SP — 14) «— IX,

») PSW (SP — 15, SP — 16) « I,
Example: PUSH S) SP «—SP— 16

Saves eight 16-bit registers (AW, BW, CW, DW, SP, BP, IX,
and 1Y) to the stack.

Bytes: 1

Transfers: 8

Flag operation: None
Example: PUSH R

14.150

NEC

pPD70320/322
PUSH imm8 PUSH imm16
Push, 8-bit immediate data, sign expansion Push, 16-bit immediate data
7 0 7 0
T I T T T T T
o 1 "1 7o i o Tl [0 i o 1 0 0 o]
‘ T T T T T T] T T
l imm8] | imm16-low l
(SP — 1, SP — 2) « Sign expansion of imm8, % ' ‘ imm1%—high= T J

SP —SP-2

Expands the sign of the 8-bit immediate data specified
by the operand. Saves the data as 16-bit data to the stack
addressed by the SP.

Bytes: 2

Transfers: 1

Flag operation: None
Example:

PUSH 5

PUSH -1

(SP —1,SP — 2) «— imm16,

SP —SP -2

Saves the 16-bitimmediate data described by the oper-
and to the stack addressed by the SP.

Bytes: 3

Transfers: 1

Flag operation: None
Example: PUSH 1234H

14.151

uPD70320/322
POP mem16 POP reg16
Pop, 16-bit memory Pop, 16-bit register
0 7 0

T T T T T

’70[1‘011’1l lregi J

mod 0 1] 0

T T T T
(disp-low)

7
11}0|001111
|
I
|

|
T T T T T T T !
|
J

I (displ-high)’

(mem16) «— (SP + 1, SP),
SP «—SP+2

Transfers the contents of the stack to the 16-bit memory
location addressed by the operand.

Bytes: 2/3/4
Transfers: 2

Flag operation: None
Example: POP DATA

14.152

reg16 « (SP + 1, SP), SP « SP + 2

Transfers the contents of the stack to the 16-bit register
specified by the operand.

Bytes: 1

Transfers: 1

Flag operation: None
Example: POP BP

NEC

pPD70320/322
POP sreg POP PSW
Pop, segment register Pop, program status word
7 0 7 0
T T T T T T T T T T T T
0 0 0 sreg 1 1 1 I { 1 0 0 1 1 1 0 1

sreg «— (SP +1,SP), SP <SP + 2

Transfers the contents of the stack to the segment reg-
ister (except PS) specified by the operand. External inter-
rupts NMI and INT, and single-step breaks will not be
acknowledged between this instruction and the next.
Bytes: 1
Transfers: 1
Flag operation: None

Example: POP DS1

PSW « (SP + 1,SP), SP <SP + 2

Transfers the contents of the stack to the PSW.
Bytes: 1

Transfers: 1

Flag operation:

MD*| Vv | DIR| IE |BRK| S 4
R R R R R R R

P cY
R R

R

I
|
I

*The Mode flag (MD) can only be modified by POP PSW
during Native mode calls from 8080 Emulation mode; i.e.
between the execution of BRKEM and RETEM instruc-
tions. In Native mode outside of Emulation mode, the MD
flag will remain setto 1 regardless of the contents of the
stack. Do not alter the MD flag during Native mode calis
from Emulation mode, or during Native mode interrupt
service routines which may be executed by interrupting
Emulation mode execution.

Example: POP PSW

14.153

NEC

uPD70320/322
POP R PREPARE imm16,imm8
Pop, register set Prepare new stack frame

7 0 7 0

I T T T T T T T T T T T

o 1 1 0 0o o' o | [+ 170 0o 10 0o o |
IY « (SP + 1, SP), [7 7 Timmie-ow’]
IX «— (SP + 3, SP + 2),
BP « (SP + 5, SP + 4), T T L
BW « (SP + 9, SP +8), [imm16-high]
DW «— (SP + 11, SP + 10), } :
CW «— (SP + 13, SP + 12), I imm8 J

AW « (SP + 15, SP + 14),
SP «— SP + 16

Restores the contents of the stack to the following 16-bit
registers: AW, BW, CW, DW, BP SP, IX, and IY.

Bytes: 1
Transfers: 7
Flag operation: None

Example: POP R

(SP—1,SP —2) «—BP,
SP «— SP — 2,
temp < SP,
When imm8 > 0, repeat these operations “imm8 — 1"
times:
(SP—1,SP—2«(BP—1,BP—2)
SP «— SP — 2 (*1, see notes)
BP «— BP —2
and perform these operations:
(SP — 1, SP — 2) « temp
SP « SP — 2 (*2, see notes)

Then perform these operations:
BP «— temp
SP «— SP —imm16

Notes: When imm8=1, *1 is not performed,
When imm8=0, *1 and *2 are not performed.

Used to generate “stack frames” required by the block
structures of high-level languages such as Pascal and
Ada. The stack frame includes a local variable area as
well as pointers. These frame pointers point to other
frames containing variables that can be referenced from
the current procedure.

The first operand (16-bit immediate data) specifies (in
bytes) the size of the local variable area. The second
operand (8-bit immediate data) specifies the depth (or
lexical level) of the procedure block. The frame base
address generated by this instruction is set in the BP
base pointer.

First the oid BP value is saved to the stack so that BP
of the calling procedure can be restored when the called
procedure terminates. The frame pointer (BP value saved
to the stack) thatindicates the range of variables that can
be referenced by the called procedure is placed on the
stack. This range is always a value one less than the
lexical level of the procedure. If the lexical level of a
procedure is greater than one, the pointers of that proce-
dure will also be saved on the stack. This enables the
frame pointer of the calling procedure to be copied when
frame pointer copy is performed within the called
procedure.

14.154

NEC

Next, the new frame pointer value is set in the BP and
the area for local variables used by the procedure is
reserved in the stack. In other words, SP is decremented
only for the amount of stack memary required by the local
variables.

Bytes: 4
Transfers:
When imm8 = 0: none
When imm8 >1: 1+ 2(imm8-1)
Flag operation: None
Example: PREPARE 10,3

uPD70320/322
DISPOSE (no operand)
Dispose a stack frame
7 0
T T T T T T T

SP —BP,
8P «— (SP + 1, SP),

SP «—SP+2

Releases the laststack frame generated by the PREPARE
instruction. A value that points to the preceding frame is
loaded in the BP and the bottom of the frame value is
loaded in SP.

Bytes: 1

Transfers: 1

Flag operation: None
Example: DISPOSE

14.155

NEC

uPD70320/322

BRANCH BR short-label
BR-near-label Branch short relative, same segment
Branch Relative, Same Segment BR near-label 7 0

7 0 [+ 7171 70" 1 "0 1" 1|
[+ "1 71770 170 0" 1] I i — |
[7 7 T (disp-low)| . ,

C «— PC + ext-disp8
I T f r (displ-high)|] Loads the current PC value plus an 8-bit (actually, sign-
extended 16-bit) displacement value to the PC. When the

PC «— PC + disp

Loads the current PC value plus a 16-bit displacement
value to the PC. If the branch address is in the current
segment, the assembler automatically generates this
instruction.

Bytes: 3

Transfers: None

Flag operation: None
Example: BR LABEL1

branch address is in the current segment and within
+127 bytes of the instruction, the assembler automati-
cally generates this instruction.

Bytes: 2
Transfers: None
Flag operation: None

Example: BR SHORT_LABEL

14.156

NEC

uPD70320/322

BR regptr16 BR memptr16
Branch register, same segment Branch memory, same segment
7 0 7 0

T T T T T T T T T T T T

[1T 11111 1] L1 T S T TR 1 ‘
T T T T T T T T T T T T T T

L 1 1 1 0 0 reg] ‘ mod 1 0 0 mem —I

T T

PC « regptr16 L W (disp-low) ']

Loads the contents of the 16-bit register specified by the i ; . ; . .

operand to the PC. This instruction can branch to any [(disp-high)]

address in the current segment.
Bytes: 2

Transfers: None
Flag operation: None

Example: BR BX

PC « (memptr16)

Loads the contents of the 16-bit memory location ad-
dressed by the operand to the PC. This instruction can
branch to any address in the current segment.

Bytes: 2/3/4
Transfers: 1
Flag operation: None

Example: BR TABLE [IX]

14.157

NEC

uPD70320/322
BR far-label BR memptr32
Branch direct, external segment Branch memory, external segment
7 0
T T T T T T T T T T T T T T
1 1 0 1 0 1 1 1 1 1 1 1 1 1
T T T T T
offset-low mod 1 0 1 mem

T T

|
I T T T T T T T
l

|

(T T
l

|

I A el

T . T T 1 T
offset-high (disp-low)
T T T T T T L
seg-low l (disp-high)
["7 seghigh | T PS « (memptr32 + 3, memptr32 + 2)
PC «— (memptr32 + 1, memptr32)
PC « offset, Loads the upper two bytes and lower two bytes of the
PS « seg 32-bit memory addressed by the operand to the PS and

Loads the 16-bit offsét data (second and third bytes of
the instruction) to the PC and the 16-bit segment data
(fourth and fifth bytes) to the PS. This instruction can
branch to any address in any segment.

Bytes: §

Transfers: None

None
FAR_LABEL

Flag operation:
Example: BR

14.158

PC, respectively. This instruction can branch to any
address in any segment.

Bytes: 2/3/4

Transfers: 2

None
FAR_SEGMENT [IY]

Flag operation:
Example: BR

NEC

uPD70320/322
CONDITIONAL BRANCH BNV short-label
BV short-laBel Branch if not overflow
Branch if overflow 7 0
1 T T
7 0 IF o 1 1 1 o o o }
T T T

i 0 1 1 1 0 0 0 0 J

r - disps | ‘ |

[i ; " disps ‘ ‘ |

When V = 1, PC « PC + ext-disp8

When the V flag is 1, load the current PC value plus the
8-bit (actually, sign-extended 16-bit) displacement value
to the PC. This instruction can branch to any address
within +127 bytes of the instruction in the current
segment.

Bytes: 2

Transfers: None

Flag operation: None

Example: BV OVERFLOW_ERROR

When V = 0, PC «— PC + ext-disp8

When the V flagis 0, load the current PC value plus the
8-bit (actually, sign-extended 16-bit) displacement value
to the PC. This instruction can branch to any address
within +£127 bytes of the instruction in the current
segment.

Bytes: 2

Transfers: None

Flag operation: None
Example: BNV NO_ERROR

14.159

wPD70320/322 N E C

BC short-label BNC short-label
BL short-label BNL short-label
Branch if carry/lower Branch if not carry/not lower
7 0 7 0
T T T T T T T T T T T T T
LO I 1 1 1 0 0 1 0 —I 0 1 1 1 0 0 1 1 —|
T T T T T T T T T T T T T T
B disp8] disps]
When CY =1, PC « PC + ext-disp8 When CY =0, PC «— PC + ext-disp8

When the CY flag is 1, load the current PC value plus When the CY flag is 0, load the current PC value plus
the 8-bit (actually, sign-extended 16-bit) displacement the 8-bit (actually, sign-extended 16-bit) displacement
value to the PC. This instruction can branch to any value to the PC. This instruction can branch to any
address within 1127 bytes of the instruction in the cur- address within 1127 bytes of the instruction in the cur-

rent segment. rent segment.
Bytes: 2 Bytes: 2
Transfers: None Transfers: None
Flag operation: None Flag operation: None
Example: Example:
BC CARRY_SET BNC CARRY_CLEAR
BL LESS_THAN BNL GREATER_OR_EQUAL

14.160

NEC

uPD70320/322

BE short-label
BZ short-label

Branch if equal/zero

7
T T T T T T

BNE short-label
BNZ short-label

Branch if not equal/not zero

0
[0'1110100]

[T T

T T
L disp8 |

When Z = 1, PC < PC + ext-disp8

When the Z flag is 1, load the current PC value plus the
8-bit (actually, sign-extended 16-bit) displacement value
to the PC. This instruction can branch to any address
within £127 bytes of the instruction in the current
segment.
Bytes: 2
Transfers: None
Flag operation: None

Example:
BE EQUALITY
BZ ZERO

When Z =0, PC «— PC + ext-disp8

When the Z flag is 0, load the current PC value plus the
8-bit (actually, sign-extended 16-bit) displacement value
to the PC. This instruction can branch to any address
within £127 bytes of the instruction in the current
segment.

Bytes: 2

Transfers: None

Flag operation: None

Example:
BNE NOT_EQUAL
BNZ NOT_ZERO

14.161

pwPD70320/322 N E C

BNH short-label BH short-label
Branch if not higher Branch if higher
7 0 7 0

T T T 1 T T T T T T T T T T

l 0 1 1 1 0 1 1 0 1 [0 1 1 1 0 1 1 1]
T T 1 T T T T T T T T T T

[disp8 1 [disp8]

When CY OR Z =1, PC « PC + ext-disp8 When CY ORZ =0, PC « PC + ext-disp8

When the logical sum of the CY and Z flags is 1, load =~ When the logical sum of the CY and Z flags is 0, load
the current PC value plus the 8-bit (actually, sign- the current PC value plus the 8-bit (actually, sign-
extended 16-bit) displacement value to the PC. This extended 16-bit) displacement value to the PC. This
instruction can branch to any address within £127 bytes instruction can branch to any address within 1127 bytes

of the instruction in the current segment. of the instruction in the current segment.
Bytes: 2 Bytes: 2

Transfers: None Transfers: None

Flag operation: None Flag operation: None

Example: BNH NOT_HIGHER Example: BH HIGHER

14.162

NEC

uPD70320/322

BN short-label
Branch if negative

BP short-label
Branch if positive

T T T T T

7 0
T T T T T T
(o711 17170 0" 4

T
T ! T

7 0
KRR o' o o]
l

digp8 l ”7[) 1

T T T T
(disp8

When S = 1, PC — PC + ext-disp8

When the S flag is 1, load the current PC value plus the
8-bit (actually, sign-extended 16-bit) displacement value
to the PC. This instruction can branch to any address
within £127 bytes of the instruction in the current
segment.

Bytes: 2

Transfers: None

Flag operation: None
Example: BN NEGATIVE

14.163

When S =0, PC «— PC + ext-disp8

When the S flag is 0, load the current PC value plus the
8-bit (actually, sign-extended 16-bit) displacement value
to the PC. This instruction can branch to any address
within +127 bytes of the instruction in the current
segment.

Bytes: 2

Transfers: None

Flag operation: None

Example: BP POSITIVE

nPD70320/322 N E C

BPE short-label BPO short-label
Branch if parity even Branch if parity odd
7 0 7 0

T T T T T T T T T T T T T T

o "+ 7171717017 o | Jo' 1 171 1 0T]
T T T T T T T T T T T T T T

| disp8 [disp8]

When P = 1, PC «— PC + ext-disp8 When P =0, PC « PC + ext-disp8

When the P flag is 1, load the current PC value plusthe ~ When the P flag is 0, load the current PC value plus the
8-bit (actually, sign-extended 16-bit) dispacement value 8-bit (actually, sign-extended 16-bit) displacement value
to the PC. This instruction can branch to any address to the PC. This instruction can branch to any address
within +£127 bytes of the instruction in the current within +127 bytes of the instruction in the current

segment. segment.

Bytes: 2 Bytes: 2

Transfers: None Transfers: None

Flag operation: None Flag operation: None
Example: BPE PARITY_EVEN Example: BPO PARITY_ODD

14.164

NEC

uPD70320/322

BLT short-label
Branch if less than

BGE short-label

Branch if greater than or equal

T T T T

7
Lo v "+ 717171 0 o]
‘ T T

T T T T
disp8]

! T T disps

When S XORV = 1, PC « PC + ext-disp8

When the exclusive OR of the S and V flags is 1, load
the current PC value plus the 8-bit (actually, sign-
extended 16-bit) displacement value to the PC. This
instruction can branch to any address within +127 bytes
of the instruction in the current segment. When the con-
ditions are unsatisfied, proceeds to the next instruction.
Bytes: 2

Transfers: None

Flag operation: None

Example: BLT LESS_THAN

When S XORV =0, PC «— PC + ext-disp8

When the Exclusive OR of the S and V flags is 0, load
the current PC value plus the 8-bit (actually, sign-
extended 16-bit) displacement value to the PC. This
instruction can branch to any address within £127 bytes
of the instruction in the current segment. When the con-
ditions are unsatisfied, proceeds to the next instruction.
Bytes: 2

Transfers: None

Flag operation: None

Example: BGE GREATER_OR_EQUAL

14.165

wPD70320/322

NEC

BLE short-label
Branch if less than or equal

BGT short-label
Branch if greater than
0

T T T T T T T
1 1 1 1 1 1 1 J

T T T T
I disp8

7
[o
| disp8

T T T T I

When (S XOR V) ORZ =1, PC « PC + ext-disp8

When the Exclusive OR of the S and V flags and the
logical sum of that result and the Z flag is 1, loads the
current PC value plus the 8-bit (actually, sign-extended
16-bit) displacementvalue to the PC. This instruction can
branch to any address within 1127 bytes of the instruc-
tion in the current segment. When the conditions are
unsatisfied, proceeds to the next instruction.

Bytes: 2
Transfers: None
None:

LESS_OR_EQUAL

Flag operation:
Example: BLE

14.166

When (S XORV) OR Z =0, PC « PC + ext-disp8

When the exclusive OR of the S and V flags and the
logical sum of that result and the Z flag is 0, load the
current PC value plus the 8-bit (actually, sign-extended
16-bit) displacement value to the PC. This instruction can
branch to any address within 127 bytes of the instruc-
tion in the current segment. When the conditions are
unsatisfied, proceeds to the next instruction.

Bytes: 2

Transfers: None

Flag operation: None
Example: BGT GREATER

N E C uPD70320/322

DBNZNE short-label DBNZE short-label
Decrement and branch if not zero and not equal Decrement and branch if not zero and equal
7 0 7 0

[]

L1 1 1 0 0 0 0 0 1 { 1 1 1 0 0 0 0 1 J

1 : ‘ : s
disp8 disp8 |

L ; L j

CW — CW —1 CW « CW —1

When CW # 0and Z =0, PC « PC + ext-disp8 When CW#0and Z =1, PC « PC + ext-disp8

When the 16-bit register CW is decremented (—1), the When the 16-bit register CW is decremented (—1), the
resultant CW value is not 0, and the Z flag is cleared, load CW is not zero, and the Z flag is set, load the current PC
the current PC value plus the 8-bit (actually, sign- value plus the 8-bit (actually, sign-extended 16-bit) dis-
extended 16-bit) displacement value to the PC. This placement value to the PC. This instruction can branch
instruction can branch to any address within 127 bytes to any address within 127 bytes of the instruction in the

of the instruction in the current segment. current segment.

Bytes: 2 Bytes: 2

Transfers: None Transfers: None

Flag operation: None: Flag operation: None

Example: PBNZNE LOOP_AGAIN Example: DBNZE LOOP_AGAIN

14.167

uPD70320/322 N E C

DBNZ short-label BCW?Z short-label
Decrement and branch if not zero Branch if CW equals zero
7 0 7 0
T T T T T T T T T T T T T T
[+ 717170 0 0" 1 0] [171"7170 0" 0" 17 1]
T T T T T T T T T T T T T
| disp8 ! | disp8 J
CW «— CW —1 If CW =0, PC « PC + ext-disp8
When CW # 0, PC «— PC + ext-disp8 When the 16-bit register CW is 0, load the current PC

When the 16-bit register CW is decremented (—1) and value plus the 8-bit (actually sign-extended 16-bit) dis-
the CW value is not zero, load the current PC value plus placement value to the PC. This instruction can branch
the 8-bit (actually, sign-extended 16-bit) displacement to any address within 127 bytes of the instruction in the
value to the PC. This instruction can branch to any current segment.

address within 1127 bytes of the instruction in the cur- Bytes: 2

rent segment.
Bytes: 2 Transfers: None

Transfers: None Flag operation: None

Flag operation: None Example: BCWZ CW_ZERO

Example: DBNZ LOOP_AGAIN

14.168

N E C uPD70320/322

BTCLR mem 8, imm 3, short-label

Bit test and if true then clear and branch eise no operation
0

1

7
T T T
o o o o 1 1

T T
1
T T T T T T T
1 0 0 1 1 1 0 0

T T
imm 3

|
|
mems]
|
|

|
|
|
|
r l T dis}) 8 ‘ ’ I

When the condition of the bit of the special function register
is 1, execution of BTCLR can be used to reset that bit (0) and
branch to the short label described in the operand.

Bytes: §
Transfers: None

Flag operation: None
Example: BTCLR 9CH, 7, TIMER_INT

14.169

wPD70320/322

BREAK BRK imm8 (#3)

BRK 3 Break, immediate data

Break, vector 3 7 0
7

(SP — 1, SP — 2) «— PSW
(SP —3,SP —4) «— PS
(SP — 5, SP — 6) «— PC
SP «—SP—6

IE—0

BRK «— 0

PC « (13, 12)

PS «— (15, 14)

Saves the PSW, PS, and PC to the stack and resets the
IE and BRK flags to 0. Then loads the lower two bytes
and higher two bytes,of vector 3 of the interrupt vector
table to the PC and PS, respectively.

Bytes: 1

Transfers: 5

Flag operation:

IE | BRK }] T
0 0 [|
Example: BRK 3

[1r1lo'o'1'1'o‘1j
l] T

T
imm8

(SP — 1, SP — 2) « PSW

(SP —3,SP —4) «— PS

(SP —5,SP —6) «— PC

SP—SP -6

IE+~0

BRK «— 0

PC « (imm8 X4 + 1, imm8 X4)

PS «— (imm8 X4 + 3, imm8 X4 + 2)

Saves the PSW, PS, and PC to the stack and resets the
IE and BRK flags to 0. Then loads the lower two bytes
and upper two bytes of the interrupt vector table (4 bytes)
specified by the 8-bit immediate data to the PC and PS,
respectively.

Bytes: 1

Transfers: 5

Flag operation:

IE | BRK
0 0

Example: BRK 10H ;PC = (40H,41H),

:PS = (42H,43H)

14.170

N E C uPD70320/322

BRKV (no operand) RETI (no operand)
Break if overflow Return from interrupt
7 7 0
t 1 1 0o 0 1 1 1 0 1 |1 1 0o o 1 1 1 1
When V = 1, PC «— (SP + 1,SP)
(SP — 1, SP — 2) «— PSW PS «— (SP + 3,SP + 2)
(SP —3,SP — 4) «— PS PSW « (SP +5, SP + 4)
(SP —5,SP — 6) — PC SP—SP+6
SP —SP -6
IE « 0 Restores the contents of the stack to the PC, PS, and
PSW. Used for return from interrupt processing.
BRK <0
PC « (011H, 010H) Bytes: 1
PS « (013H, 012H) Transfers: 3

When the V flag is set, saves the PSW, PS, and PC to Flag operation:
the stack and resets the IE and BRK flags to 0. Then loads
the lower two bytes and upper two bytes of vector 4 of

the interrupt vector table to the PC and PS, respectively. L v »DlR IE BRK ¢ S “ Z, J
When the V flag is reset, proceeds to the next instruction. L ,R, R R. R | R . R, A
Bytes: 1

AC P CY | l
Transfers: 5 R R | R* I R
Flag operation:

Example: RETI
IE BRK B]

0 0

Example: BRKV

14171

pPD70320/322

RETRBI (no operand)
Return from Register Bank interrupt

FINT (no operand)
Finish of interrupt

7
|70!0{0!0!1‘

1 T 1
[+ 70 0 "1 o

PC « Save PC

PSW < Save PSW

Return instruction for register bank interrupt. This is used
when returning from the interrupt processing routine which
has used register bank switching function. It can not be
used for return from vector interrupt.

Bytes: 2

Transfers: 2

Flag operation:

\ DIR IE | BRK

R R R R
AC P CcYy

R R R

Example: RETRBI

Indicates to the CPU that interrupt processing for interrupt
controller is completed. For all interrupts exclusive of NMI,
INTR and software interrupt, it is necessary to execute
before the return instruction from interrupt. It cannot be
used for NMI, INTR and software interrupt.

Bytes: 2

Transfers: None

Flag operation: None
Example: FINT

14.172

N E C wPD70320/322

CHKIND reg16,mem32 Transfers:

Check index When interrupt condition is fulfilled: 7
7 0 When interrupt condition is not fulfilled: 2
0

Lo 1" 170 0 o

Flag operation:

When interrupt condition is fulfilled:

T

‘ mod reg mem | - T
IE | BRK , !

T T T T T T T ! |
B (disp-low)] L 1

T ‘ T e ninhy T T Example:
l (disp-high) J When interrupt condition is not fulfilled: None:
When (mem32) > reg16 or (mem32 + 2) <reg16 Example:
(SP — 1, SP — 2) « PSW MOV 1X,23
(SP —3,8P —4) — PS CHKIND IX,BOUNDS1 ;0K
(SP —5,SP —6) «— PC MOV BW,87
SP —SP—6 CHKIND BW,BOUNDS2 ;causes
IE«—0 :BRK 5
BRK «— 0 BOUNDS1 DW 5,37
PS « (23, 22) BOUNDS2 DW 2,80
PC «— (21, 20)

Used to check whether the index value in reg16 is within
the defined array bounds. Initiates a BRK 5 when the
index does notsatisfy the condition. The definition region
should be set beforehand in the two words (first word

for the lower limit and second word for the upper limit)
of memory.

L/ L]/ -

15 [
Array Element Mem32 +2 (Upper Limit)
Mem32 (Lower Limit)|

N

49 000029A

14.173

pPD70320/322

CPU CONTROL POLL (no operand)

HALT (no operand) Poll and wait

Halt 7 0
7 [1 70 0 17170717 1]

0
T T T
1 1 171 0 10! o]
Sets the halt state. The halt state is released by the
RESET, NM|, or INT input.
Bytes: 1

Transfers:

None
Flag operation: None

Example: HALT

14.174

Keeps the CPU in the idle state until the POLL pin
becomes an active low level.

Bytes: 1
Transfers: None
Flag operation: None

Example: POLL

N E C uPD70320/322

STOP (no operand)
Stop

|1‘ 0 0 1 i i i 0}

Initiates Stop mode. The stop mode is released by RESET
or NM|

Bytes: 2
Transfers: None

Flag operation: None
Example: STOP

14.175

uPD70320/322

DI (no operand)
Disable interrupt

El (no operand)
Enable interrupt

7 0
f1'1'1'1'1'0'1'ol

[+ 1 1 1710

IE+~0

Resets the IE flag and disables the external maskable
interrupt input (INT). Does not disable the external non-
maskable interrupt input (NMI) or software interrupt
instructions.

Bytes: 1

Transfers: None

Flag operation:

IE
0

Example: DI

14.176

El <1

Sets the El flag and enables the external maskable inter-
rupt input (INT). The system does not enter the interrupt-
enable state until executing the instruction immediately
after El.

Bytes: 1
Transfers: None
Flag operation: [E |

Example: El

NEC

uPD70320/322
BUSLOCK (no operand) FPO1 fp-op
Bus lock prefix Floating point operation 1, register
7 7 0

In the large-scale mode (S/LG = 0)

Outputs the buslock signal (BUSLOCK) while the instruc-
tion immediately after the BUSLOCK instruction is being
executed. When BUSLOCK is used for a block operation
instruction with a repeat prefix, the BUSLOCK signal is
kept at an active low level until the end of the block
operation instruction.

Hold request is inhibited when BUSLOCK is active. The
BUSLOCK instruction is effective when you do not want
to acknowledge a hold request during block operations.

In small-scale mode (S/LG = 1)

The BUSLOCK signal is not an output. However, the
BUSLOCK instruction can be used to delay a hold
acknowledge response to a hold request until execution
of the locked instruction is completed.

Bytes: 1

Transfers: None

Flag operation: None

Example: BUSLOCK REP MOVBKB

instruction not executed, interrupt takes place

14177

nPD70320/322

FPO1 fp-op,mem
Floating point operation 1, memory

NEC

Floating point operation 2, register
7

I T T T

0
0 1 1 0 0 1 1 X J

7

[11 0 11 T x T x I

I m‘od l Y ‘ Y] Y T ‘hmem |

| (disp-low) | |
T I LA T

l (disp-high)]

Data bus < (mem)

instruction not executed, interrupt takes place

14.178

N E C uPD70320/322

FPO2 fp-op, mem NOP (no operand)
Floating point operation 2, memory No operation
7 0 7 0
T T T T T T T T T T T I
(o717 77 7070 v 1 x| [170 0" 170 0 o o]
mod Y Y Y @ mem I Causes the processor to do nothing for three clocks.
. — . - : : ‘ . Bytes: 1
l (disp-low) | Transfers: None
T T T Flag operation: None
l (disp-high) '

Example: NOP

Data bus « (mem)

instruction not executed, interrupt takes place

14.179

pPD70320/322 N E C

SEGMENT OVERRIDE PREFIXES

DSo0:
DS1:
PS:
SS:
7 0

T T T T T T T
0 1 sreg 1 1 0

When appended to the operand, specifies the segment
register to be used for access of a memory operand
expecting segment override.

You can define the segment override by assembler direc-
tive "ASSUME” without describing the segment override
prefix directly (see Assembler Operating Manual).

Bytes: 1
Transfers: None
Flag operation: None

Example:
MoV IX,DS1:[1Y]
REP MOVBKB DEST_BLK,SS:SRC_BLK

14.180

N E C pPD70320/322

OVERVIEW OF
INSTRUCTIONS

(ALPHABETIC ORDER)

14.181

uPD70320/322

Instruction Instruction Page

ADD (1T N (1o RS CALL Near-procC 14.144
mem,reg regptr16 ... 14.144
reg,mem memptri6 14.145
reg,imm far-proc ... 14.145
mem,imm memptr32 14.146
acc,imm CHKIND regi6mem32 14.173

ADDC TEGIEG ..ovivereririnaninininanins CLR1 reg8,CL ... 14.92
mem,reg mem8,CL 14.92
reg,mem reg16,CL 14.93
reg,imm mem16,CL 14.93
mem,imm reg8,imm3 ... 14.94
acc,imm mema8,imm3 14.94

ADD4S reg16,imm4 14.95

ADJBA memi6,immé4 14.95

ADJBS CY 14.96

ADJAA DIR ... 14.96

ADJ4S PP PR P PPPR Ccmp reg,reg 14.67

AND TEGFEG .ottt mem,reg 14.67
mem,reg reg,mem ... 14.68
reg,mem reg,imm 14.68
reg,imm ... mem,imm ...l 14.69
mem,imm aceC,imm ..., 14.69
acc,imm . CMPBK

BC short-label 14.160 CMPBKB

BCwz CMPBKW

BE CMP4S

BGE CMPM

BGT CMPMB

BH CMPMW

BL CvTBD

BLE CvVTBW

BLT CVvTDB

BN CVTWL

BNC DBNZ

BNE DBNZE

BNH DBNZNE

BNL DEC

BNV

BNZ

BP DI

BPE DISPOSE

BPO . DIv

BR near-label 14.156
short-label 14.156
regptri® ...
memptr16 Divu
far-label

BRK

DSO:

BRKV DS1:

BTCLR El .

BUSLOCK ... EXT reg8,reg8 ...l 14.25

BV reg8,immé ... 14.26

BZ FINT 14.172

14.182

NEC

uPD70320/322

Instruction Page Instruction Page
FPO1 fD-0P i 14177 NOT1 reg8,CL ... 14.87

fp-op,mem ... 14.178 mem8,CL 14.88
FPO2 fP=OP oo 14.178 reg16,CLl 14.88

fp-op,mem ... 14179 memi6,CL 14.89
HALT 14.174 reg8imm3 ... 14.89
IN acc,imm8 ... 14.27 mem8,imm3 14.90

acC,DW 14.27 regl6imma ... 14.90
INC TEQ8 ..t 14.49 mem16,imm4 14.91

MEM ittt 14.49 CY 14.91

1€G16 ... 1450 OR TEGTET ..o 14.77
INM dst-block,DW 14.30 MEMTEG ..., 14.78
INS reg8,reg8 ... 14.23 regMemM 14.78

re@8,imma ... 14.24 FeQIMM L.t 14.79
LDEA regi6,memi6 14.13 mem,imm ... 14.79
LDM src-block ... 14.21 ACC,IMM ... 14.80
LDMB 1421 OUT IMMB,ACC ..., 14.28
LDMW 14.21 DWaccoooviiiiiiii 14.28
MOV LYo N (=Y 146 OUTM DW,src-block 14.31

MEMTEG .veereeeeeiiieiieeanns 146 POLL

rGMEM ..ottt 14.7 POP

MEMIMM .o, 14.7

reQ,iMM ..ot 14.8

acc,dmem ... 14.8

dmem,acco 14.9

sreg,reg16 ... 14.9 PREPARE

sregmemi6 ... 14.10 PS:

regl16,Sr€govvvnniiiiiiniians 1410 PUSH

MEM16,Sr€Fovveniiiaranennns 14.11

DSO,reg16,mem32 14.11

DS1reg16,mem32 14.12

AHPSW ... 14.12

PSWAH ... 14.13
MOVBK dist-block,src-block 14.18
MOVBKB . 14.18 REP
MOVBKW i 1418 REPC
MUL T€QG8 ..t 14.54 REPE

MEMB .. oniiiiiiiieieiiins 14.54 REPNC

regib ..ot 14.55 REPNE

memi6 ... 14.55 REPNZ

reg16,reg16,imm8 1456 REPZ

reg16,mem16,imm8 14.56 RET

reg16,reg16,imm16 14.57

reg16,mem16,imm16 14.57 RETRBI
MULU =T PP 1452 RETI

MEM8 ..viiiiiieeeaieeanne 1452 ROL

regib ...ooiiiiiii e 14.53

mMeM1B ..o 14.53
NEG TEQ ittt 14.71 .

MEM it 14.71 regimm8 ... 14.124
NOP 14.179 mem,imm8 ...l 14.125
NOT [T 14.70

MEM L.t iiiieeeeiianas 14.70

14.183

uPD70320/322

Instruction
ROLC

ROL4

ROR

RORC

ROR4

SET1

SHL

SHR

SHRA

regl oo

mem,1

reg,CL

mem,CL

reg,imm8 .
mem,imm8coeeiiiinnn, 14.137
mMeM8ooviiiiiieiiiiiieenn. 14.47
TE@Y8 ..ttt 14.47
r€g,1 .o 14.126
mem,T ..o 14.127
regCL 14.128
mem,CL 14.129
reg,imm8 14.130
mem,imm8cciiiiiinn 14.131
reg,l ..o 14.138
mem,1 ... 14.139
regCL 14.140
mem,CL 14.141
reg,imm8 14.142
mem,imm8

reg8 ...

mem8oiiiiiiiiiiiiia.

reg8CL ...t
mem8,CL

reg16,CL .
memiSCL ... 14.98
reg8,imm3 ..o 14.99
mem8,imm3 ... 14.99
reg16,immd 14.100
mem16,imm4 14.100
CY

DR

reg,1

mem,1

reg,CL

mem,CL

reg,imm8 .
mem,imm8ooiiinnl 14.107
regl oo 14.108
mem,<1 ... 14.109
regCL ..o 14.110
memCL ... 14.111
regimm8 14.112
mem,imm8 14.113
reg,l 14.114
mem,1 ... 14.115
regCL ... 14.116
memCL ... 14.117
regimm8 ... 14.118
mem,imm8 14.119

Instruction
SS:

ST™M
STMB
STMW
STOP

suB

SuBC

sSuB4S
TEST

TEST1

TRANS
TRANSB
XCH

XOR

14.184

[Rl 14.40
MEMIEG ...vvvnieiriiniiininns, 14.41
[Te K LT | P 14.41
regimm ... 14.42
mem,immcociviiinienns 14.42
acCC,imm ...t 14.43
....................................... 14.45
reGre0 ..ottt 14.72
MEeMIEG ..ovviieeeaiieeeannn.ns 14.72
regimm ... 14.73
mem,imm ... 14.73
acC,imm ...l 14.74
reg8,CL ... 14.83
mem8CL ... 14.84
7egi6,CL ... 14.84
memi16,CL ...t 14.85
reg8,imm3 ... 14.85
mem8,imm3 ... 14.86
reg16,immé ... 14.86
memi6,imm4 14.87
src-table 14.14
...................................... 14.14
=T N Yo T 14.14
MEeMIegoovvvieeieiiiiaani... 14.15
AWreg16ll 14.15
[T KT R
mem,reg

reg,mem

reg,imm .
mem,immooiiiiiiiiiia... 14.82
acc,imm ... 14.83

N E C WPD70320/322

INSTRUCTION
EXECUTION TIMES

14.185

WPD70320/322

C

v v - - : 62101001 Moot s
Mb+0L+v3 Mb+pL+v3 MZ+8+v3 MZ+0L+V3 vz | woewbBaipow | MLL0000L e
€ € ‘ € € ‘ 4 Bas Bas | | ML10000!} Bau ‘Bas HOX
- - M+ ol M+ 0L L LLLOLOLL ajqe-oIs SNvHL
z+v3 z+va — T o w2 | wewseipow | Loriooor | 9t wew gy e vaal
_ o ¢ g L 0LLLLOOL HY ‘MSd
T —) z z | LLLLL0O0L MSd 'HY
| mr+ei+va | me+ei+va | - | - pz | wewBeipow | 0010001! i:mw 1180
Mp+6L+va | My+er+va - — | vz | wowsbeipow | i0to0001:1t B
£+v3a ‘r\i\@r\w +/.+v3 \\I o - T :W/nN waw Bass g pow 00 —Uxo ol bBais ‘g| waw m.
€ € - - z Be1boisOLL | 00110001 Boss ‘gL 601 | g
MZ+0L+Vv3 MZ+0L+V3 - — p-z | wewBassgpow | 0111000 9] waw ‘Bais W
Ty \ oy -) - z 01110001 | 91baiGass m
5 MZ+6 M+S M+L g ML000LOL 008 ‘wowp e
| Mzl mz+i | m+s | m+e e | M00001L01L wawp ‘00e)
e ' s S e Boim1LOL wwy ‘s
MZ+G+V3 MZ+S5+V3a M+G+va M+g+va 9€ | WewOoOOPOW | ML LOOOLL ww ‘wow
MZ+8+Vv3 MZ+8+V3 M+9+v3 M+9+Vv3 -2 waw Bas pow MI0LOOOL waw ‘Bas
z+v3a Mz + wiﬂm 4 +Mw M+ + <1m - ¥-2 waw me\%_bf \>> 0010001} boswow |
4 [w{ o 4 2z 2 61 Bos (Y M1L0OLOOO "~ bou ‘B AOW
aESPAVE | oldEue Y ajqesip WvH ajqeU WYY soq| OVZEVS9L [012EVS9L dnors
PIOM B kg joou [apoo uopesado pusiedo OUOIBUL | Stk

14.187

pPD70320/322

umz+9 +91 umez+oL) +9t UuM+9)+9i =§+8A.Mw.w
oL MZ+L oL m+zi L MLOLOLOL %00Iq-isp WIS
umez+zL) +9L umez+z+9i UM +01+91 =§+o:%ww m
MZ+vL MZ+pL m+zi M+2L L MOLLOLOL %00(q-018 wal w
UM+ +91 UM+21)+9L um+sL +9L c§+m:mmm_w m
MZ+6L MZ+6L M+ L1 M+ L MLLLIOLOL 300ig-Isp WdINO m
m..
UMz +62) +91 uMme+82) +91 umez+12) +91 =§N+§A.+n._w_w 300/q-Isp m
My +12 MY+ 22 MZ+6L MZ+€2 3 MLLOOLOL 400Iq-01s MEdND
ume+2zi) +91 u(Mvp+02)+91 uMmi+zi)+9l =§N+w_zum_w %00(q-0Is
MZ+02 MY +t2 ML+9L MZ+02 3 MOLOOLOL “Ho0iq-1sp MEAOW
ZNd34
4 4 4 4 3 0LOOLELE 3INd3Y
2434 m
8
343y s
4 4 4 4 3 LLOOL L L d34 s
4 4 4 z L 00100410 ONd3Y mw
4 z z z L L0L00LLO 0d3y
alqesip Wvd sjqeus WvH a|qesip Wvd 9|qeus Wyy somq | 02EPS9L 0L2€EVS9L dnot
oy j0 ou apoo Uoneiado puesado Juowsuw _uhm“.

14.188

wWPD70320/322

UMy +1L)+8L UMy +GL) +8l uMmz+Li)+8L c§>m+m:mmmw 500]q-0IS 53
"dal =3
My + 2L MY +12 MZT+ 11 MZ+6) L MLLLOLLO ma WLNO mw
F— - — S S — S—
UMy + 1) +8L UMy +SGL)+8L uMz+) +8L u(MZ+EL +8L Mma §
('dai) s}
mv+LiL my+ie me+ 11 me+6l L MOLLOLLO 400|g-ISp |3
i MZ+6 T mz+e T m+e M+6 N MLLLOLLL ooema g 5
T me+or T mez+ol TTmeor | m+or | 2 I T? Loott: | ooeguuwr wo| 3
MZ+SL MZ+SH M+E€l M+EL L MOLEOLLL Ma ‘oo §
N — S S — — — S S ——— B O U— o
Mz +9l MZ+9l M+l M+ z MOLOOLLL g wuwi ‘00 N @
62100041
. o
2 LLOLLEOO L11L1L0000 ¥ wwi ‘g Ba) =
1 S S SN R RSl N BN Shchuntha — z
BoiBas | | a
T B
€ L1L00LLOO LL110000 g8 621 ‘g Bas xalg
s N R SR R S— - R Bt
6210004 L 5
v | 100L1+00 | LLLL0000 | bwwi'gba g
- e ———— S T — e St — — - — e —— | =
Bai1bas | | S
——— — o
€ L0001 100 LLL1L0000 g bou ‘g Bai SNI
sjqesip WvH a1qeus Wvy a|qesIp WvY 8|qeus Wvy (q| 012EVS9L | 012EVSOL nois
S IR SajAq puesado oluowauw | vou
pPIOM lAg jo ou apoo uonesado onis

14.189

C

WPD70320/322

9 9 S S €2 MOLLLOO0O wwy ‘o0e
My+oL+va M+ 3‘+]<M R ‘\sﬂﬂﬁu\ I ;\?\o‘ﬂﬁ\ - ‘\m,.m\ wow | Lopow | MS 000004 wuwew |
I . | S D s | ve Baip 104t MS000001 N mE_ B |
 Mz+g+v3 mz+e+va \\\[BH\@‘H <m_ R >> +9+v3 [&4 waw Bas pow Mmio _ﬂ_:olo mﬂ | wew e]
>>~+w+<m) gv‘,ﬂmﬂw,\w,\‘ >>_+o‘+<m .«>>N+m_+<w 14 Emewewos\ i MOO0L1L000 Ba) ‘waw
4 4 1T 4 4 4 BasBas | | MLOLL000 | Boi'Bes T om:mL
9 0 s s &2 | morioroo | wwooe |
M7P+0L+Vv3 My +pL+v3 iz%‘m:im MZ+6+Vv3 9€ Ews_mwﬂoﬂcﬁ MS000004 wwy ‘wow
9 9 s s v€ | BL0LLL | MS000004 | wwibas
MZ+8+v3a MZ+8+v3 | M+9+V3 M+9+v3 ¥ woeus 61 powr MLOLOLOO woaw ‘Bas m».
MZ+e+va -\z.:\+m—+<u Mi+o+va 1.\<>Mwl+mﬂm v-2 waw 6o pows soo—o_ooi ba EmEl | W
4 z 2z | 2 4 BaiBas | | ;ﬂo‘_wm _\oo BeiBer ans m
) 9) Y S] mx o ?m.m ,,,,,, MOLOLOOO wuwi ‘ooe i] m
>>v+o_+<m Mb+ Pyl +v3 BN‘MNH«N\ Bl N&HWHE 9€ Emsfonop\ ‘\\m,mme‘oooﬁ Eeﬂ&ms w
. 9 9 e S S | ve | Baio L0t MS000001L wut ‘631 m.
WM\@WMH&JM}T MZ+8+v3 M+9+v3 1T ﬁwmwﬂux\f[ﬁm waw Bas pow E—oo—oooz wow'Bes | m
MZ+8+v3a My +2L+v3a ML+9+Vv3a MZ+8+Vv3 v-2 waw Bas pow Eoooﬁooo Bas ‘waw
2z 4 ‘ 2 z z Boibosyy T>>¢_ om 1000 T EX oaay
- 9 9 S S €2 M0100000 i ooe L
[mvioitva | mresitva | mziseva MZ+6+v3 | o€ | Wow000POW | MS000004 | wuwiwow
9 9 S M!’\ v 621000 _v— MS00000+ wuwi ‘Bas
| mz+e+va | mz+e+va | m+eo+va | i>>+w+<m vz waw Baspow | ML000000 B wow o
| mz+e+va MYy +2L+Vv3 ML +9+Vv3a MZ+8+va vz wow 6e: pow | M0000000 Bas EwEf\
2 2 | e z | baubmiL | M1000000 | bau'Bu | aav
. m_nwm.wfiwm, 3|qeud WYY a|qesip Wy 3|qeus Wvd somq | 0tCEVS9L | OlZEVS9L nois
pIom g ——|j00u Vv T epoouonmiedo | puesado oluowauw Mmr

14.190

wPD70320/322

4 z - - I Ba11 0010 91 Bas “
M <‘+ LL+v3 >>v+mﬂﬂ<m “ﬂm;im , >>N+ b +<m‘ N vz wow 1 00 pow >>_ LLLLbL wow | B m
s - S Hi S e S o z ‘i/me 100t .W\! oLl _MF [wme\) - Bamm
T z - - o - - 62100 010 91 6o ww
My +LL+v3 My +SL+va MZ+6+V3 MZ+LL+v3 v-z | wawooOPOW | MLLELLLL waw 8
B 5 s s S | 2 | seooo0u I gbor ONI °
‘ii\;/‘ ‘ o o o o 1 wauw Q OO pow S o i
MZ+2Z+Vv3a MZ+yZ+Vv3 S€ | 010L0LOO 11110000 g wow
-) o T o o 6ai1 0 0\0— 8 N o
- B 2 2 € 01010100 11110000 g Bos | yHoY m
waw g 0 0 Pow m
- - MZ+9L+Vv3 MZ+8L+V3 S€ | 000L0L00 11110000 8 wow m.
6210004 L 2
- - 1L A € 00010400 LL1L1L0000 g8 bai y104 m
- - umz+e2 + 22 UMz +ED +2e N; 01100 Qm I F‘omm‘o - + :m«m_\aw‘ m
- | Umesso+zz | umesm+zz | ¢ | 01000i00 | siiiooo0 | | swans
- - u(Mme+52) +22 uMe +L2) +22 m | 00000100 LLLL0000 syaav
a|qesip Wvd 2jqeud Wvd 2|gesIP VY a|qeus vy 0L2€7G9Z | 0L2EVS9L anoib
PIOM S R——e — womﬂm —— 9P00 Uoneiado — puesado | ouowauw ‘wm,”r

14.191

C

wPD70320/322

MZ+PS+VvI~ MC+pS+Vva~ 9| wwi
.w-EwE
MZ+yr+v3 M2+ pp+v3a - - 9y waw Ba: pow L00LOLLO 91 bas
| wwy
.wo_mw:
05 ~ 0¥ 0S ~ o - - 14 Baibai | | L00LOLLO 91 621
MZ+ES+VI~ MZ+ES+VI~ 8 wwy
\wwEmE
MZ+er+v3 MZ+ep+v3 - - [waw Bas pow LLOLOLLO 91 a1
wwy
. (91 Bay)
67 ~ 6€ 67 ~ 62 - - € Ba16as | | LLOLOLLO 9| Bas
MZ+25+va~ MZ+25+VI~
| me+ev+va MZ+ep+v3 - - y-Z | wewiQLpow | LLLOLLLL 91 wew
2
8¥ ~ 6€ 8v~ 6¢ - - z BaspoitL LELOLLLL 94 Bai L
M+2p+va~ M+2p+va~ g
[*]
- - M+€€+Vv3 M+€€+v3a y-Z | wewQLpow | OLLOLLLE 8 wow a
B
8
2
- - oy ~ 1 o ~ 1€ 4 Bas QL1 OLLOLLLL 8 bas nw | 3
MZ+ve+v3a MZ+yeE+V3 - - Pz | wewoOLPOW | LLLOLLLL 91 wow
4 2 - - 4 621001 L1 LLLOLLLL 91 Bos
- - M+92+v3 M+9Z+Vv3 y-g | wowQOLPOW | OLLOLLLL 8 waw
BarBos - ve ve 4 61001 L L OLLOLLLL g Bas NN
a|qesip Wvy a|qeus Wvy a|qesip Wvd a|qeus Wvd soq 0L2EVPS9L 0L2€VS9L
Biom pey = et opoo &:Emao puesado oluowdUW

14.192

wWPD70320/322

C

8poo uogesado

MZ+89 + VI~ MZ+89 +V3~
Me+85+Vv3 MZ+8S+Vv3 - - pg | wewiLipow | LLLOLELL 91 waw
¥9 ~¥S v9 ~ ¥S - - 2 Basp Lt LLLOLL LY 94 6as &
3
Q
o
s
@
o B N SR A (S 2
3
5
M+8S + V3~ M+8S+va~ g
- - M+8p +V3 M+8p +V3 p-g | wow L Lpow | OLLOLLLY g waw Qe
g
ow
- - 95 ~ ¥ 95 ~ oY z Basp Lyt OLLOLLLL 8 Bas
| Na
J|qesip WvY 9|qeua vy 2|qesip Wy ajqeus vy 0LZeEVS9L 0L2E¥S9. anoit
— . A A pueiado oluoweuw | uou
akg Jo ou oniis

14.193

C

WPD70320/322

MZ+ep+v3a MZ+er+v3 - - v-g | wewoLlpow | LLLOLLL 9L wow
c
=]
@,
E]

6¢ 6¢g - - 14 Baig L L1y LLLOLL LY 94 Ba 2

a

s,

@,

o

3

- - 5

2

c

o3

g

- - M+e€E+Vv3 M+€€+v3 p-g | wewQLLpow | 0LLOLLLI 8 wow @

- - e e 4 BargL |11 OLLOLLLL 8 Bas
nAId
aqesip WvH V jqeus Wvy aiqesip Wyy a|qeus Wyd sokq | 0'CEYS9L | 0lzEYS9L

‘ : - — Tloou [5poo cmzm‘_mao — puesado ojuowauw

PIOM

aikg

14.194

wPD70320/322

MZ+LL+v3 My +GL+v3 ML+6+Vv3 MZ+ 1L +v3 pg | wowlLopow | MLLOLLLE waw 5
B s i g o _ 5
S S S S 4 BaslL ot MLEOLLLL Ba1 REIN m.m
- 7 1 h S les
MZ+1L+Vv3 My +GL+V3 ML+6+v3 MZ+1L+Vv3 p-g | wawQlLQPow | MLLOLLILL wow mM
“““ — z i e S 32
S S S S 2z 6ai0 L0kt MELOLLLL Bas ION| ~
- 2 T ¢ RO T _

9 9 S S -2 MOLLLLOO wuw ‘008 o

M +0L+v3 My +vl+v3 MZ+L+v3 MZ+6+Vv3 9-¢ | wow | | |pow | MS00000! wu ‘waw m
9 9 g S ve | BaLlillL | MS00000! ww; ‘Bas g
MZ+8+V3 MZ+8+V3 M+9+v3 M+9+Vv3 vz | wewBaipow | MLOLLLOO wow ‘6o 2
MZ+g+v3 My +2L+v3a ML+9+v3a MZ+8+V3 vz | wswBaipow | MOOLLLOO Bas ‘waw 8
— — S— E— — — — m
4 4 4 z 4 Baibos | | MLOLLLOO Ba1 ‘Bas dwo | @
8 - - L 10011001 IMIAD | 9
S A S I . _ g Y58
Y
- - € £ ' 00011004 mawno |5 o

o _ I B R B L — S B ~ls

- - 61 6L 4 0L0L0000 | LOLOLOLE gaLN0 wm
— e = - S - - —® @
- - 0z 0z 4 01010000 | 00LOLOLIL Qg0 | 8

o3)

8

- - 6 6 L 11110100 syrav | g
e . _ R R S SRSt I b 8
=1

@

- - I m | LLLLL100 sarav | 3

ot

2

- - 6 6 ! 11100400 wwrav | §

— R E e e e o
- - 11 11 L LLLOLLOO varav | @
algesip WvH a|qeud vy aqesIp WvH alqeua vy 0LZEVS9L | 0L2EVSOL dnoid

— — sokq | —— puesado oluowauw
DIOM okg joou apo9 uonesado

14.195

C

pPD70320/322

9 9 S S €2 M0L0L100 wuw ‘oo
MZ+B8+V3 >><+ﬁw<\u,l:\ MZ+L+v3 MZ+6+Vv3 9-€ EwEo:um& M0000001 ww ‘waw x
9 9 S o S e ?me‘m‘, ber M000000} wuwi _mw‘h\
MZ+8+Vv3 Mz+e+va | m+e+vi | m+o+vd | vz | wowbsipow | M100LL00 | wow B
 mz+s+va >>q+§+<mfr ML+9+V3 MZ+8+V3 p-2 | wewBaipow | MOOOLLOO Borwow
- 4 2 4 4 4 Boi Bas | | ML0O0LLOO 621 ‘6as HOX
o 9 s s ez | [morioooo | wwooe
| >>N+m\+<m My +vL+v3 a\sm‘ww:‘m | mzee+va | oe Ewe‘roouosi M000000} I E_‘Ew\a‘\
9 9 s s | wve| eui00t1 | mooo000OL | wwiba |
o Mz + m + <m._ o 1..»>\N‘Hm ﬂ«m | Mmto+va | M+9+v3 v-2 waw Bas pow ML0L0000 wauw ‘Bas .m
MZ+8+Vv3 My +2L+v3a ML+9+v3 Mz+e+va p-z | wewbaipow | M00L0000 Ba1 ‘waw 8
e | 2 z ¢ | BuBmii | Mi010000 | BeirBas | 3
f—- ——— e o
9 9 S S £z MOL001L00 Wy ‘098 S
w‘ﬂsﬂpo:«m | Mrtvi+va | me+s+va MZ+6+V3 9°€¢ | WewooLPOW | M000000! wun ‘wow | w
9 9 s | s |vel| swoori1 | moooooor | wwbu | g
Mz +8+v3 MZ+g+v3 M+9+va | M+9+va | pz | wewbapow | M1000.00 | wew'es | @
MZ+8+v3 My+2i+va ML+9+V3 MZ+8+Vv3 vz | wswBaipow | M0000L00 63, ‘wow
R 1 Tz 2 4 4 Boibai | | M1000L00 | BosBas any
e | e s e e | | moototor | wwwooe | |
 mztltva MZ+1L+v3a M+1L+Vv3 M+ 1L +v3 96 | WewpOoOPOW | MLLOLLLL ww wew |
e 8 - L . | ve | swooort | mitoviir | wwbe |
MZ+0L+Vv3 MZ+0L+Vv3 M+8+v3 M+8+v3 vz | wewBaipow | M0L000OL s B
v v v 1 v | 2| eusaii | moioooos | utaw | isa
|qesip Wvy s|qeUd WvY a|qesIp vy 3|qeua Wyy 0LZEVS9L | 0LZEVSIL anoss
| piom alkg w,ow ﬁm_ 8poo uoijesado puesodo | owouseuw “mv

14.196

WPD70320/322

C

z z 2 z [] LOLOLLLL A0 [uon]
MZ+0L+v3 MYy +pL+v3a ML+8+Vva MZ+0L+Vv3 9 | wewoQoOpPow | L1} ¥ wuwi ‘gl waw
9 9 9 9 14 6210001} [¥ wwi ‘9| Bas
MZ+0lL+V3 My +yL+Vv3 Mi+8+Vv3a MZ+0L +Vv3 9 waw g 0 0 pow oLLL £ wwi ‘g waw
9 9 9 9 v 6210004+ oLlLl € ww ‘g 62l
MZ+eL+va My +LL+V3 ML+1L+Vva MZ+eEL+v3 G-€ | wewQOoOPOW | L1140 70 ‘91 wow
L L L L € 6210001 1 L1110 10 ‘91 Bas @
MZ+EL+V3 Mb+LL+v3a Mi+1L+va MZ+eEL+VA G- | wawoQOPOW | OL1LO 70 ‘g wow m
L L L L € 62100014 L oLtLO 10 ‘g Bas LION m
MZ+0L+v3 MZ+0L+Vv3 M+8+va M+8+Vv3 9-v | wowooopPowW | LOO! P wuwi g} wow a
9 9 9 9 14 62100014 L 100} ¥ ww ‘9| Bau m
MZ+O0L+V3 MZ+0L+Vv3 M+8+v3 M+8+v3 9% | wewooOopPoW | 000! € wwi ‘g waw G
9 9 9 9 14 62100014 L 00014 € wwi ‘g 6as
MZ+EL+V3 MZ+eEL+V3 M+1L+v3 M+ 1L +v3 G- | wawoQoOopPOW | 1000 70 ‘91 wow
L L L L € 62100014 L 1000 70 ‘91 B
MZ+EL+Va MZ+eL+v3a M+ 1L +v3 M+1L+Vv3 G-€ | wawooopow | 0000 10 ‘g waw
L L L L € 62100014 L 00004000 10 ‘g B 1S3y
2|qesIP WvY 8jqeus Wvd a|qesip Wvy a|qeus Wvd soihq| 0 HCEVSOL | 0L2EVSIL anosd
PIOM kg jo ‘ou 2poo uonesado puesado uoussuw u,mm

14.197

pPD70320/322

4 4 4 4 I LOLEEELL Hia
2 Z I 4 3 LOOKLLLE AD 1138
c 14 2 4 3 00LLELLL Hia
2 2 [4 3 000LLLLL AD 10
9lAq pig akq pug
MZ+0lL+v3 My +¥L+V3 MmiL+8+v3 MZ+0l +Vv3 9 waw Q 0 0 pow Lot P wwi ‘g) wow
9 9 9 9 14 62100014 + Lot ¥ wwi ‘g Bas
MZ+0L+V3 My +pL+Vv3 MlL+8+V3 MZC+0l+Vv3 9v waw Q0 0 pow 001!t € Wwi ‘g waw
9 9 9 9 14 6210001 4 001t € ww ‘g Bai
MZ+EL+YVI My +/LL+Vv3 MLE+1L+Vv3 MZ+ElL+Vv3 G-€ wauw g 0 0 pow toto 70 ‘91 waw
A L L L € 62100014 1 l0to0 10 ‘91 Bas @
MZ+EL+V3 MY +LL+V3 ML+1L+Y3 MZ+EL+Vv3 S-€ waw Q 0 0 pow 00140 70 ‘g waw m
L L L L € 62100014 1 001t0 70 ‘g Bas 1138 w
MZ+0L+V3 My +GlL+Vv3 ML +6+V3 MC+1l+v3 9 wew g 0 0 pow LLot ¥ Wwi ‘g} waw W
L L L L 14 62100014 4 L1LO} ¥ wuw ‘g Bas .w.,v.
MZ+0L+V3 My +GL+Vv3a ML +6+V3 MZ+1l+v3 9y wew g 0 0 pow oLo0l £ Wwi ‘g waw 3
L L L L 14 62100014 L 0LO0t € wun ‘g Bay
MZ+vL+v3 MP+8L+Vv3 ML +2L+Vv3 MZ+PL+v3 S-€ | wawQQQpow 1100 70 ‘91 waw
8 8 8 8 € 63100014 L 1100 70 ‘94 Bas
MZ+vlL+v3 My +8lL+v3a ML+2L+Vv3 MZ+vyl+v3a S-€ | wWawoooPOW | 0L0O 70 ‘g wew
8 8 8 8 € Baigoo0 L} 0L00L000 10 ‘g Bau 1410
a|qesip AvHd a|qeus Nvyd 3|qestp Wvd 8jqeus Wvd saihq 0L2e¥G9L | 0L2E€EPS9L dnosb
PIOM Py jo ou pueisado ouowauw | uo

9pod uonesado

14.198

wPD70320/322

uz+Mmet+el+va uz+mMv+.1L+v3a Uuz+mMi+1iL+v3 uz+mMez+eL+v3a S-€ waw Q0 | pow MOO0O0O0O L 8 wwi ‘waw
uz+6 uz+6 uzg+6 uz+6 € 6a100 1L L L MO0000OL L 8 wwi ‘a1
UZ+M2Z+LL+Vv3 UZ+Mv+1iZ2+v3a UL+MIL+GL+Vv3a uzZ+mMze+L1+v3a v-C waw 0 0 | pow MLOOLOL L 10 ‘waw m.u
=
z
ug+il uc+it uzg+il ug+ii 4 621001 L} MLOOLOL L 10 ‘Bas g
2
g
MZ+PL+YV3 My +8L+V3 ML +2L+V3 MZ+plL+Vv3 v-e waw Q0 | pow MOO0OLOL L 1 ‘waw @
8 8 8 8 1 621004 L L MOOOLOL L | ‘Bas IHS
ajqesip NvY a|qeud Wyy ajqesip NvY 8jqeud Wvy solk 0L2EYS9L | 0L2EVSIOL dnoib
/a puesado ouowauw | o
jo-ou 2p0o uonesado anis

PiCM

alkg

14.199

wPD70320/322

UZ+ME+EL+VI | UZ+MP+LL+VE | UZ+ML+1LL+V3 | UZH+MZ+EL+VI | G€ | Waw | || pow | MOOOOOL L 8 Wwwi ‘waw
uz+6 uz+e uz+6 uz+6 € Basp Ly MO0000O0LL 8 wuwi ‘Bas
UZ+MZ+IL+VI | UZ+MP+12+VIE | UZ+ML+GL+V3 | UZ+MZ+/L+VI | p2 | Waw | | jpow | MLOOLOL 70 ‘waw
uz+il uz+it uz+il ugz+it 4 Basp iy MLOOLOLL 10 ‘Bas
MZ+pL+v3a M7P+8L+v3 Mi+2L+v3 MZ+yL+v3a p-Z | Wew | pow | MOOOLOLL 1 ‘wew

(2}

8 8 8 8 4 Barp Lyt MOO0OLOLL | ‘Bas VuHS | 2

2

UZ+MCH+EL+VI | UZH+MP+LL+VE [uZ+MI+1L+VI | UZ+MZ+EL+VI | G€ | wow QL pow | MOOOOOL 8 ww! ‘waw m

- =)

g

uz+6 uz+e uz+6 uz+6 € BasLotLit M0000O0 L 8 wus ‘Bas 2
UZ+HMZ+LL+VE | UZH+MP+IZ+VI | UZ+MIL+GL+VI | UZ+MZ+LL+V3 | p-2 | wewioLpow | MLOOLOL 70 ‘'waw
uz+i uz+ 1l uz+ it uz+ it z BarioL MLOOLOLL 10 ‘Bas
MZ+yL+v3 Mp+8L+V3 ML +2L+Vv3 MZ+yL+v3a y-Z | wew LQLpow | MOOOLOLL | ‘waw
Gas ‘Bas

8 8 8 8 z LoLLL MOO0OLOLL 1 HHS

21qEsIP VY a|qeus Wvd s|gesip Wvy 3|qeus Wyy 0LZEVS9L 0LZEVS9L nois

wm&a — puesado oluowsuw | o

piom akg jo ou 8po9d uonesado onis

14.200

WPD70320/322

UZ+MT+EL+VI | UZH+MP+LL+VE | UZ+MLI+LL+VE | UZ+MZ+EL+VI | G€ | waw L QoOpPoWw | MOOOOOL I 8 ww ‘waw
uz+6 uz+e uz+6 uz+6 € 62110041 MO0000O LI 8 wuw ‘69,
UZ+MZ+LL+V3 My +1Z+v3 UZ+ML+GL+V3 | UZ+MZ+LL+VI | -2 | wow L Q0POW | MLOOLOL L 70 ‘waw
uz+il uz+il uz+i uzZ+il 2z 61100 L MLOOLOLL 10 ‘Bas
MZ+yL+Vv3 MYy +8L+v3 ML+2L+V3 MZ+pL+Vv3 v~z | wew L QOPOW | MOOOLOLL | ‘wow
0
=}
g
8 8 8 8 4 BaiL00 kL MOO0O0LOL L | ‘Bas HOH | §
5
UZ+MZ+EL+VE | UZ+MP+LL+VI | UZ+HML+LL+VE | UZ+HMZ+EL+VE | G€ | WBWOQOOPOW | MOOOOOLL 8 wwi ‘waw §
S
[z
uz+6 uz+6 uzZ+6 uz+s6 € 62100014 L M0000O0L 8 wwi ‘6ol
UZ+MZ+LL+VE | UZ+MP+1Z+VI | UZ+ML+GL+Va | UZ+MZ+LL+VE | ¥ | wawQOOPOW | MLOOLO L 70 ‘waw
uz+ i uzZ+ it uz+il uzZ+ Lk z 6o1 000 L1 MLOOLOLL 10 ‘Bas
MZ+PyL+v3 My +8L+V3 ML+2L+V3 MZ+pL+v3a p-g | wewQOOPOW | MOOOLOI | ‘waw
8 8 8 8 4 6210001t MOO0O0LOLL | ‘Bas pe’]
ajgesip WvY a|qeus Wvy a|qesip WvH ajgeus WvH kq| O2EPS9L | 0L2EVSOL anoib
seiAq puesado sluowauwW | o
alAg joou 8po9d uopesado -onis

piom

-l

14.201

C

uPD70320/322

UZ+MZ+EL+YI | UZ+HMP+LL+VI | UZ+MLE+LL+VI | UZ+MZ+EL+VI | G€ | wow 0LOPOW | MOOOOOL 8 wuw ‘waw
uz+e uz+6 uz+6 uz+6 € Bas 0LOL MO0O000O L 8 ww ‘6a,
UZ+HMZHLL+VE | UZ+HMP+1Z2+Ya | UZ+ML+GL+VI | UZ+MEZ+LL+VI | p2 | Waw 0LOPOW | MLOOLOLL 70 ‘waw
pe)
)
g
9.
uzZ+ i uz+ 1t uz+ i uz+ ik 2z BaioLoL MLOOLOLL 10 ‘Bos 2
e
S
2
3
MZ+PpL+va MY +8L+va ML+2L+Vv3 MZ+PpL+va p-g | wew QLOPOW | MOOOLOLL L ‘wow
8 8 8 8 4 621 0LOL L MOO0O0LOLL | ‘Bas 0104
a|qesIp Wy a|qeus Wvy a|qesip WvH s1qeua Wy soq| 0V ZEVS9L [0L2ZEVSIL anoss
DIOM m;m 10 ‘ou D:E@Qo Jdluowsuw “Mr

8poo uonesado

14.202

WPD70320/322

UZ+MZ+EL+Va | UZ+MP+L+vVI | UZ+HMI+LE+VE | UZ+MZ+HEL+VI | G€ | waw LLQpow | MOOOOOL} 8 wuwi ‘waw
uz+6 uz+6 uz+6 UZ+E € Bas LLOL MO000OL I 8 wuw ‘Bas
UZ+MZHLL+V3 | UZ+MP+IZ+V3 | UZ+ML+GL+VE | UZ+MZ+/LL+VE | v2 | Waw LLopow | MLOOLOLI 10 ‘wew .
g
o
uzg+it uz+it uz+iL uz+il g Bas L1OLL MLOOLOLL 70 ‘Bas 2
g
MZ+yL+v3a MY +8L+V3 ML+2L+V3 MZ+pL+V3 p-Z | wew L LQopPow | MOOOLOLI L ‘wow
8 8 8 8 4 Bas LLOLL MOO0OLOL I | ‘Bos o4O
a|qesip Wvd a|qeus Wvy a|qesip WvY a|qeud WyH kq| O+TEPSOL) OLZEYSYL anoss
s3iAq puesado owowsuw | von
joou 2p09 uonesado : ons

PIOM

alkg

14.203

wPD70320/322

M7V +0¢E MV +0E - - € 0LOLOOL L anfea dod
MV +62 My +62 - - 3 110100 »
c
o
Me+02 MeZ+02 - - € 010000141 anjea dod m
Mez+02 MeZ+02 - - I L100001L I 134 m
8
M8+ P2 +V3 M8 +9E+Vv3 - - Ve waw | | o pow FLLLELLE 2¢ adwaw W
5
MY+ e MV +8¢E - - S 0LOLIO0O} 00.d Jey W'
2
MV +p2+Vv3 My +92+Vv3 - - v waw g | 0 pow FERLEELEL 91 Adwaw a
MZ+8L MZ+22 - = 4 621010141 LB LL 91 ndbas
Me+8L Me+2e - - € 000LOL L L 204d 1eau Tv0
ajqesip WvY djqeus Wvd s|qesip Wvd 8jqeus AvY oLZeys9L | 0LeeErS9L
saq puesado ouowasuw
jo ‘ou 8poo uonesado :

pIom

alkg

14.204

pPD70320/322

MP+62+v3 MY +S2+v3 - - p-z | wewpoipow | LLLLLLLL 2¢ ndwow
st st - - S 0L010kL1L joqe-se} m
MZ+LL+vE MZ+LIL+V3 - - p-z | wewooLpow | LLLLLLLL 91 ndwow m
€l gL - - z | BaooLLL | LibiLLLl 91 ndbas &
2z 2 - - z LLOLObLL joqe|-Loys m
2 2 - - £ 10010k LY 1oqel-1eau va |
MZ+2l Mz+el - - L 10010011 350dsia
- - - - v 00040041 | gwwi'oLww | JuvdIbd
8% Mol +28 - - ! 10000140 H
M2+l MZ+l - - L LoLLL00L Mmsd ”
Mz +EL MZ+EL - - L 1116255000 Baus 8
Mz +zl Mz+zi - - ' Ba1 L1040 91 6oy 3
MZ+2l+va My +9L+va - - vz | wowooOPOW | 1111000 91 wow dod | 2
ot Mmz+pl - - -2 0S0L0L10 wun g
05 Mol +28 - - 1 00000110 " 2
9 MZ+0l - - L 00111001t MSd m
L Mmz+ it - - ' 0116855000 Bois @
9 MZ+0L - - L 62101010 91 6o
MY+ bl +v3 Mb+8L+v3 - - vz | wowoiipow | LLLLLLLL 91 wow HSNd
alqEsIp WvH alqEUs WvH a1qesip Wy a1qeUa WvH comq| 0tEEPS9L[0LEEVSIL o
J0 'ou 3pod UopeIado puesado oluowauw w.__“.w»

PIOM

alkg

14.205

pPD70320/322

‘02€04/22£0£Ad" 8y} 10} UORONSUI PAPPE AIMBN,

1PqEI-TIouS
- - 62 62 S | 0011100k | LLLLOOOO) W18
8/51 8/51 - - 2 Lioo 1eqer-uoys Zmo8
8/L1 8/Lh - - 2 0400 1eqer-uous ZNaa
8/L1 8/L4 - - 2 1000 1eqet-lous 3zNEa
821 8/L1 - - z 0000011} | Ieqeruous 3INZNEQ
8/51 - - 2 bebe 1eqer-bous 198
8/st - - 2 0bbL 19qei-ous T18
8/l - - z Lot 1eqer-pous 308 | 4
8/54 - - z 00t eqer-pous 8 m
8/st - - z LLot Ieqer-uous od | §
8/5t - - 2 010t 19qe|-ious 38 | §
8/51 - - z 1001t 1oqe|-Loys || s
8/t - - 2 00014 1eqei-uous na | &
/54 - - z Lito 19qeI-Hoys ve | §
8/ - - z 0440 18qer-uous g |
8/514 - - 2 L0140 12qel-uoys B
8/51 - - 2 0040 1oqet-Loys 2
8/54 - - z LLOO 1oqel-Hoys AL
8/51 - - z 0100 1eqer-pous L
8/l - - z 1000 1eqer-pous ANg
8/t - - z 00001110 | [QeI-bous g
a1aesIP Wy 31aeUs WvH a1esIP WvH a1qeus v 0+2€v59Z |012EVS9L wrors
Y .wowa.wm 3poo Uoneiado pueisado dluowauw | o

Piom

Ut

14.206

pPD70320/322

'0280./22€0.ad" au} 10} uononsut pappe AimaN,

- - - - ve waw Ba1 pow 01000410 | 2€waw gl Bas ANIHO
4 2 4 4 4 0L001001 11110000 . AN
43 413 - - 4 L000LO0O!} 1110000 « 184134 | _
3
MZ+6E M9 +EY - - I LLLLOOL L 1134 m
S
MOL +EY MOL +GS - - 3 oLLIOO0L!L nNaa W
§
g
(€+) ?
e+
MOL + b MO} + 95 - - 4 101100 L g ut)
MOL +Ey MOL +GS - - 3 00LLOOL L € Mdg
ajqes!p NvY 3|qeua Wvy ajqesip Wvd 8|qeud WvY 012€VS9L 0LZeEVS9L dnoss
mw&n puesado oluowauw | uon
jo-ou apoo uopesedo -onis

PIOM

alkg

14.207

wPD70320/322

1dnuaju ve sajelausb Inq ‘02£02/22€0, OdM Ul UO 8IN9aXa Jou $80Q g,
02€0£/22€0.Qd" U} 10§ UOKON.SUI PAPPE AIMBN :Z.
'SS “Sd ©190 080 ‘1«

2 22 2 2 I OLLbBasLO00 be
12 12 14 12 3 00001004 dON
MOL +8v MOL +09 - - P | WOWAAAPOW | XLL0OLLO wow ‘do-dj |g,
MOl +8p MOL +09 - - 4 ZZZAAALL | XLL0O0LLO do-dj 20dd
MOL +8p MOL +09 - - V- | WOWAAAPOW | XXXLELOLL waw ‘do-dj |¢g, m
MOl +8v MOL +09 - - 2z ZZZAAALL | XXXLLOLL do-dj 10dd4 .m.
2z 4 4 ez 3 0000+ 4L %0071SN8 w
4} 2L 43 43 L LLOLLLLL IE] m
14 ¥ ¥y v L OLOLLLLL a m
- - - - 1 LLOLLOOL T0od
- - - - 4 OLLLLOOL LLL1L0000 ¢ dois
- - - - 3 00LOLLLL 0vH
8|qesip WvH 3|qeus Wvy a|qesip Wvd alqeud Wvy sokq| 0+ CEVSOL [0L2ZEYSIL anosts
Py 10 ‘ou P00 Uoneiado puesado duowsuw | son

PiOM

14.208

EUROPEAN DISTRIBUTORS

AUSTRIA

A&D

ABRAHAMCZIK & DEMEL
GES MBH & COKG
EICHENSTRASSE 58-64/1
1120 WIEN

TEL : (222) B57661

TLX 0134273

BELGIUM

CN ROOD

DE JAMBLINNE DE MEUXPLEIN 37
1040 BRUSSEL

TEL - (02) 7352135

TLX. . 22846

MALCHUS ELECTRONICS PVBA
PLANTIN EN MORETUSLEI172
2000 ANTWERPEN

TEL © (032) 353256

TLX.: 33637

DENMARK

MER-EL A/8

VED KLAEDEBO 18

2970 HOERSHOLM

TEL : (2) 571000

TLX. 37360

FINLAND

QY FERRADO A/B

PO.BOX 54

VALIMONTIE 1

00380 HELSINKI 38

TEL . (0) 550002

TLX 1122214

FRANCE

ASAP

MONSIEUR LEGRIS

42. RUE HENRI MATISSE
59930 LA CHAPELLE DARMENTIERES
TEL.: 20351110

ASAP

RUE DE TROIS PEUPLES

78190 MONTIGNY LE BRETONNEUX
TEL.: (1) 30438233

TLX.: 698887

cCl

5, RUE MARCELIN BERTHELOT
BP 92

92164 ANTONY

TEL.: (1) 46662182

TLX : 203881

ccl

5, RUE BATAILLE
69008 LYON
TEL.- 78744456

CEDIS (TOURS)

1, RUE DU DANEMARK
37100 TOURS

TEL - 47417646

CELTI

Z 1. DE COURTABCEUF
9, AVENUE DU QUEBEC
91940 LES ULIS

TEL.: (1) 64460909
DIM INTER

65-67, RUE DES CITES
93300 AUBERVILLIERS
TEL : (1) 48349370
TLX.: 230524

DIM INTER (COLMAR)
27, RUE KLEBER
68000 COLMAR

TEL.: 89411543

DIM INTER (VILLEURBANNE)
101. RUE DEDIEU

69100 VILLEURBANNE

TEL.: 78683229

EALING

BATIMENT AUVIDULIS
AVENUE D'OCEANIE

Z A. D'ORSAY COURTABCEUF
BP 90

91943 LES ULIS CEDEX

TEL.: (1) 69280131

GEDIS

352, AVENUE G. CLEMENCEAU
92000 NANTERRE

TEL.: (1) 42040404

GEDIS (AIX)

MERCURE C

Z.1. D'AIX EN PROVENCE
13763 LES MILLES CEDEX
TEL.. 42600177

GEDIS (ALPES)

21, RUE DES GLAISONS
38400 ST. MARTIN D'HERES
TEL 75512332

SERTRONIQUE (LILLE)
20, RUE CABANIS

BP 35

59007 LILLE CEDEX
TEL : 20477070

SERTRONIQUE (MANS)
60, RUE SAGEBIEN
CEDEX 43

72040 LE MANS

TEL 1 43842460

TLX .1 720019

TEKELEC

RUE CARLE VERNET
CITE DES BRUYERES
92310 SEVRES

TEL.: (1) 45347535
GERMANY
BIT-ELECTRONIC AG
DINGOLFINGER STRASSE 6
8000 MUNCHEN 80
TEL . (089) 418007-0
TLX.: 5212931

GLEICHMANN+ CO ELECTRONICS
GMBH

BAHNHOFSTRASSE 55-1
7250 LEONBERG

TEL.: (07152) 26031
TLX.0 177156218

GLYN GMBH

SCHONE AUSSICHT 30
6272 NIEDERNHAUSEN
TEL :(06127) 8077

TLX.0 4186911

H3W ELEKTRONIK VERTRIEB GMBH
STAHLGRUBERRING 12
8000 MUNCHEN 82
TEL.: (089) 429271
TLX.: 5214514
MICROSCAN GMBH
UBERSEERING 31

2000 HAMBURG 60

TEL - (040) 6320030
TLX.: 213288

REIN ELEKTRONIK GMBH
LOTSCHERWEG 66

4054 NETTETAL 1

TEL.: (02153) 733111
TLX.: 854251

SYSTEM ELEKTRONIK VERTRIEB GMBH
HEESFELD 4

3300 BRAUNSCHWEIG

TEL.: (0531) 314095

TLX.: 952351

ULTRATRONIK GMBH
MUNCHENER STRASSE 6
8031 SEEFELD

TEL.. (08152) 7090

TLX. 526459

UNIELECTRONIC VERTRIEBS GMBH
LISE-MEITNER-STRASSE 8
6072 DREIEICH 1 B. FRANKFURT
TEL 1 (06103) 35175

TLX.: 411213

ITALY

ADELSY SR.L

VIA DEL FONDITORE, 5
LOCALITA ROVERI

40127 BOLOGNA

TEL.: (051) 532119

CLAITRON S.P.A

VIA GALLARATE, 211

20151 MILANO

TEL 1 {02) 3010091

MELCHIONI S.P A
VIA COLETTA, 37
20135 MILANO
TEL : (02) 57941

PANTRONIC SR.L

VIA MATTIA BATTISTINI, 212/a
00167 ROMA

TEL . (06) 6273909
NETHERLANDS

CN ROOD

CORT V.D. LINDENSTRAAT 11-13
2288 EV RIJSWIJK

TEL . (070) 996360

TLX.: 31238

INNOCIRCUIT

MALCHUS ELECTRONICA
ADVIESGROEP

MALCHUS B.V.
FOKKERSTRAAT 511-513
3125 BD SCHIEDAM

TEL . (010) 373777

TLX.: 21598

INTRA ELECTRONICS BV
DUIVENDIJK 5C

PO .BOX 424

5672 AD NUENEN

TEL . (0031) 40838009

TLX.: (0044) 59418 INTR NL
NORWAY

JAKOB HATTELAND ELECTRONIC A/S
PB. 25

5578 NEDRE VATS

TEL.: (47) 63111

TLX.: 42850

PORTUGAL

AMPEREL S.A

AV. FONTES PEREIRA DE MELO 47, 4D
1000 LISBOA

TEL.: (1) 532698

TLX.: 18588

SPAIN

AMITRON S .A

AVENIDA DE VALLADOLID 47A
28008 MADRID

TEL . (1) 2479313

TLX.: 45550

COMELTA S A

EMILIO MUNOZ 41, NAVE 1-1-2
MADRID 17

TEL.: (1) 7543001

TLX.: 42007

LOBER S.A.

MONTE ESQUINZA 28
MADRID 4

TEL.: (1) 4421100

TLX.: 49533

SWEDEN
NORDQVIST & BERG
BOX 9145
AARSTAAENGS VAEGEN 19
10272 STOCKHOLM
TEL - (0) 8690400

TLX - 10407

TH'S ELEKTRONIK
BOX 3027

16303 SPAANGA

TEL.: (0) 8362970
TLX.:11145
SWITZERLAND
MEMOTEC AG
GASWERKSTRASSE 32
4901 LANGENTHAL
TEL : (63) 281122

TLX.: 982550

TURKEY

BURC ELEKTRONIK

VE MAKINA

SANAYI VE TICARET A.S
BANKATCHI-SOKAK 15/2
KUCUKESAT

ANKARA

TEL.. (0090) 41250300
TLX.: 43430

UNITED KINGDOM
ANZAC COMPONENTS LTD
BURNHAM LANE
SLOUGH SL16LN
ENGLAND

TEL.: (06286) 4701

DIALOGUE DISTRIBUTION LTD
WATCHMOOR ROAD
CAMBERLER

SURREY GU153AQ
ENGLAND

TEL.: (0276) 688001
FARNEHL ELECTRONIC
COMPONENTS LTD
CANAL ROAD

LEEDS LS12 2TU
ENGLAND

TEL.: (0532) 636311
IMPULSE ELECTRONICS LTD
HAMMOND HOUSE
CATERHAM

SURREY CR3 6XG

TEL.: (0883) 46433

STC MULTI COMPONENTS
EDINBURGH WAY
HARLOW

CM20 2DF

ENGLAND

TEL.: (0279) 442971

VS| ELECTRONICS LTD

ROYDOMBURY INDUSTRIAL PARK

HORSECROFT ROAD 9
HARLOW, 5

ESSEX CM19 5BYQM
TEL : (0279) 29666

NEC OFFICES

NEC Electronics (Europe) GmbH, Oberrather Str. 4, 4000 Diisseldorf 30, W. Germany,
Tel. (0211) 650301, Telex 858 996-0

NEC Electronics (Germany) GmbH, Oberrather Str. 4, 4000 Dusseldorf 30,
Tel. (0211) 650302, Telex 8 58 996-0
- Hindenburgstr. 28/29, 3000 Hannover 1, Tel. (0511) 881013-16, Telex 9230109
- Arabellastr. 17, 8000 Miinchen 2, Tel. (089) 41600 20, Telex 522 971
- Heilbronner Str. 314, 7000 Stuttgart 30, Tel. (07 11) 890910, Telex 7 252220

NEC Electronics (BNL) - Boschdijk 187a, NL-5612 HB Eindhoven, Tel. (040) 44 58 45,
Telex 51923

NEC Electronics (Scandinavia) - Box 4039, S-18304 Taby, Tel. (08) 7328200,
Telex 13839

NEC Electronics (France) S.A., 9, rue Paul Dautier, B.P. 187,
F-78142 Velizy Villacoublay Cedex, Tél. (1) 3946 9617, Télex 699 499

NEC Electronics (France) S.A., Representacion en Espana, Edificio «La Caixa»,
Paseo de la Castellana 51, E-28046 Madrid, Tél. (1) 4194150, Télex 41316

NEC Electronics ltaliana S.R.L., Via Fabio Filzi, 25A, I-20124 Milano, Tel. (02) 6709108,
Telex 315355
- Rome Office, International Business Center, P. Le Di Porta Pia, [-00189 Rome,
Tel. (06) 816051 oder 86 88 54, Telex 613689

NEC Electronics (UK) Ltd., Cygnus House, Sunrise Park Way, Milton Keynes, MK14 6NP,

Tel. (0908) 691133, Telex 777 565

- Birmingham Office, 9th Floor, Swan Office Centre, 1508 Coventry Road, Yardley,
Birmingham B 25 8 VL, Tel. (021) 7081500, Telex 333014

- Dublin Office, 34/35 South William Street, Dublin 2, Ireland, Tel. (00 01) 710200

NEC cannot assume any responsibility for any circuits shown or
represent that they are free from patent infringement.

NEC reserves the right to make changes any time without notice.
© by NEC Electronics (Europe) GmbH

9/86 V1.0

	03154619 nec.tif
	03154620.tif
	03154621.tif
	03154622.tif
	03154623.tif
	03154624.tif
	03154625.tif
	03154626.tif
	03154627.tif
	03154628.tif
	03154629.tif
	03154630.tif
	03154631.tif
	03154632.tif
	03154633.tif
	03154634.tif
	03154635.tif
	03154636.tif
	03154637.tif
	03154638.tif
	03154639.tif
	03154640.tif
	03154641.tif
	03154642.tif
	03154643.tif
	03154644.tif
	03154645.tif
	03154646.tif
	03154647.tif
	03154648.tif
	03154649.tif
	03154650.tif
	03154651.tif
	03154652.tif
	03154653.tif
	03154654.tif
	03154655.tif
	03154656.tif
	03154657.tif
	03154658.tif
	03154659.tif
	03154660.tif
	03154661.tif
	03154662.tif
	03154663.tif
	03154664.tif
	03154665.tif
	03154666.tif
	03154667.tif
	03154668.tif
	03154669.tif
	03154670.tif
	03154671.tif
	03154672.tif
	03154673.tif
	03154674.tif
	03154675.tif
	03154676.tif
	03154677.tif
	03154678.tif
	03154679.tif
	03154680.tif
	03154681.tif
	03154682.tif
	03154683.tif
	03154684.tif
	03154685.tif
	03154686.tif
	03154687.tif
	03154688.tif
	03154689.tif
	03154690.tif
	03154691.tif
	03154692.tif
	03154693.tif
	03154694.tif
	03154695.tif
	03154696.tif
	03154697.tif
	03154698.tif
	03154699.tif
	03154700.tif
	03154701.tif
	03154702.tif
	03154703.tif
	03154704.tif
	03154705.tif
	03154706.tif
	03154707.tif
	03154708.tif
	03154709.tif
	03154710.tif
	03154711.tif
	03154712.tif
	03154713.tif
	03154714.tif
	03154715.tif
	03154716.tif
	03154717.tif
	03154718.tif
	03154719.tif
	03154720.tif
	03154721.tif
	03154722.tif
	03154723.tif
	03154724.tif
	03154725.tif
	03154726.tif
	03154727.tif
	03154728.tif
	03154729.tif
	03154730.tif
	03154731.tif
	03154732.tif
	03154733.tif
	03154734.tif
	03154735.tif
	03154736.tif
	03154737.tif
	03154738.tif
	03154739.tif
	03154740.tif
	03154741.tif
	03154742.tif
	03154743.tif
	03154744.tif
	03154745.tif
	03154746.tif
	03154747.tif
	03154748.tif
	03154749.tif
	03154750.tif
	03154751.tif
	03154752.tif
	03154753.tif
	03154754.tif
	03154755.tif
	03154756.tif
	03154757.tif
	03154758.tif
	03154759.tif
	03154760.tif
	03154761.tif
	03154762.tif
	03154763.tif
	03154764.tif
	03154765.tif
	03154766.tif
	03154767.tif
	03154768.tif
	03154769.tif
	03154770.tif
	03154771.tif
	03154772.tif
	03154773.tif
	03154774.tif
	03154775.tif
	03154776.tif
	03154777.tif
	03154778.tif
	03154779.tif
	03154780.tif
	03154781.tif
	03154782.tif
	03154783.tif
	03154784.tif
	03154785.tif
	03154786.tif
	03154787.tif
	03154788.tif
	03154789.tif
	03154790.tif
	03154791.tif
	03154792.tif
	03154793.tif
	03154794.tif
	03154795.tif
	03154796.tif
	03154797.tif
	03154798.tif
	03154799.tif
	03154800.tif
	03154801.tif
	03154802.tif
	03154803.tif
	03154804.tif
	03154805.tif
	03154806.tif
	03154807.tif
	03154808.tif
	03154809.tif
	03154810.tif
	03154811.tif
	03154812.tif
	03154813.tif
	03154814.tif
	03154815.tif
	03154816.tif
	03154817.tif
	03154818.tif
	03154819.tif
	03154820.tif
	03154821.tif
	03154822.tif
	03154823.tif
	03154824.tif
	03154825.tif
	03154826.tif
	03154827.tif
	03154828.tif
	03154829.tif
	03154830.tif
	03154831.tif
	03154832.tif
	03154833.tif
	03154834.tif
	03154835.tif
	03154836.tif
	03154837.tif
	03154838.tif
	03154839.tif
	03154840.tif
	03154841.tif
	03154842.tif
	03154843.tif
	03154844.tif
	03154845.tif
	03154846.tif
	03154847.tif
	03154848.tif
	03154849.tif
	03154850.tif
	03154851.tif
	03154852.tif
	03154853.tif
	03154854.tif
	03154855.tif
	03154856.tif
	03154857.tif
	03154858.tif
	03154859.tif
	03154860.tif
	03154861.tif
	03154862.tif
	03154863.tif
	03154864.tif
	03154865.tif
	03154866.tif
	03154867.tif
	03154868.tif
	03154869.tif
	03154870.tif
	03154871.tif
	03154872.tif
	03154873.tif
	03154874.tif
	03154875.tif
	03154876.tif
	03154877.tif
	03154878.tif
	03154879.tif
	03154880.tif
	03154881.tif
	03154882.tif
	03154883.tif
	03154884.tif
	03154885.tif
	03154886.tif
	03154887.tif
	03154888.tif
	03154889.tif
	03154890.tif
	03154891.tif
	03154892.tif
	03154893.tif
	03154894.tif
	03154895.tif
	03154896.tif
	03154897.tif
	03154898.tif
	03154899.tif
	03154900.tif
	03154901.tif
	03154902.tif
	03154903.tif
	03154904.tif
	03154905.tif
	03154906.tif
	03154907.tif
	03154908.tif
	03154909.tif
	03154910.tif
	03154911.tif
	03154912.tif
	03154913.tif
	03154914.tif
	03154915.tif
	03154916.tif
	03154917.tif
	03154918.tif
	03154919.tif
	03154920.tif
	03154921.tif
	03154922.tif
	03154923.tif
	03154924.tif
	03154925.tif
	03154926.tif
	03154927.tif
	03154928.tif
	03154929.tif
	03154930.tif
	03154931.tif
	03154932.tif
	03154933.tif
	03154934.tif
	03154935.tif
	03154936.tif
	03154937.tif
	03154938.tif
	03154939.tif
	03154940.tif

